Browse > Article
http://dx.doi.org/10.14317/jami.2011.29.3_4.847

COMPLETELY INTEGRABLE COUPLED POTENTIAL KDV EQUATIONS  

Wazwaz, Abdul-Majid (Departmetn of Mathematics, Saint Xavier University)
Publication Information
Journal of applied mathematics & informatics / v.29, no.3_4, 2011 , pp. 847-858 More about this Journal
Abstract
We make use of the simplified Hirota's bilinear method with computer symbolic computation to study a variety of coupled potential KdV (pKdV) equations. Each coupled equation is completely integrable and gives multiple soliton solutions and multiple singular soliton solutions. The phase shifts for all coupled pKdV equations are identical whereas the coefficients of the obtained solitons are not identical. The four coupled pKdV equations are resonance free.
Keywords
Coupled pKdV equation; Hirota bilinear method; multiple soliton solutions; resonance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.M.Wazwaz, Multiple-soliton solutions of two extended model equations for shallow water waves, Appl. Math. Comput., 201(1/2) (2008), 790-799.
2 A.M.Wazwaz, Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation, Appl. Math. Comput., 204(1) (2008), 20-26.   DOI   ScienceOn
3 A.M.Wazwaz, Combined equations of the Burgers hierarchy: multiple link solutions and multiple singular kink solutions, Physica Scripta, 82 (2010), 025001.   DOI   ScienceOn
4 A.M.Wazwaz, Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota's method, tanh-coth method and Exp-function method, Appl. Math. Comput., 202 (2008), 275-286.   DOI   ScienceOn
5 A.M. Wazwaz, H. Triki, Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation, Appl. Math. Comput., 216 (2010), 332-336.   DOI   ScienceOn
6 A.M.Wazwaz, New solitons and kink solutions for the Gardner equation, Commun Nonlin. Sci Numer Simulat, 12(8) (2007), 1395-1404.   DOI   ScienceOn
7 A.M.Wazwaz, Multiple-soliton solutions for the Lax-Kadomtsev-Petvisahvili (Lax-KP) equation, Appl. Math. Comput., 201(1/2) (2008), 168-174.
8 A.M.Wazwaz, Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192 (2007), 479-486.   DOI   ScienceOn
9 A. M. Wazwaz, The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation, Appl. Math. Comput., 199(1) (2008), 133-138.   DOI   ScienceOn
10 A.M.Wazwaz, Multiple-front solutions for the Burgers-Kadomtsev-Petvisahvili equation, Appl. Math. Comput., 200 (2008), 437-443.   DOI   ScienceOn
11 A.M.Wazwaz, The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl. Math. Comput., 201(1/2) (2008) 489-503.
12 A.M.Wazwaz, Partial Differential Equations and Solitary Waves Theory, HEP and Springer, Peking and Berlin, 2009.
13 A.M.Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640.   DOI   ScienceOn
14 A.M.Wazwaz, Analytic study on the one and two spatial dimensional potential KdV equation, Chaos, Solitons, and Fractals, 36 (2008), 175-181.   DOI   ScienceOn
15 A.M.Wazwaz, Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations, Commun Nonlin. Sci Numer Simulat, 14 (2009), 2962- 2970.   DOI   ScienceOn
16 A.M.Wazwaz, Multiple soliton solutions and multiple singular soliton solutions for (2+1)- dimensional shallow water wave equations, Phys. Lett. A, 373 (2009), 2927-2930.   DOI   ScienceOn
17 A.M.Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190 (2007), 1198-1206.   DOI   ScienceOn
18 R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.
19 R. Hirota and M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Japan, 52(3) (1983), 744-748.   DOI
20 R. Hirota, A new form of Backlund transformations and its relation to the inverse scattering problem, Progress of Theoretical Physics, 52(5) (1974, 1498-1512.   DOI
21 R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27(18) (1971), 1192-1194.   DOI
22 J. Hietarinta, A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations, J. Math. Phys., 28(9) (1987), 2094-2101.   DOI
23 M. Ito, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher order, J. Physical Society of Japan, 49(2) (1980), 771-778.   DOI
24 M.V.Foursov, Classification of certain integrable coupled potential KdV and modified KdV equations, J. Math. Phys 41(9) (2000), 6173-6185.   DOI   ScienceOn
25 W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Mathematics and Computers in Simulation 43 (1997), 13-27.   DOI   ScienceOn
26 J. Hietarinta, A search for bilinear equations passing Hirota's three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys., 28(8) (1987), 1732-1742.   DOI