• 제목/요약/키워드: Symbiotic genes

검색결과 32건 처리시간 0.034초

Agrobacterium-Mediated Co-transformation of Multiple Genes in Metarhizium robertsii

  • Padilla-Guerrero, Israel Enrique;Bidochka, Michael J.
    • Mycobiology
    • /
    • 제45권2호
    • /
    • pp.84-89
    • /
    • 2017
  • Fungi of the Metarhizium genus are a very versatile model for understanding pathogenicity in insects and their symbiotic relationship with plants. To establish a co-transformation system for the transformation of multiple M. robertsii genes using Agrobacterium tumefaciens, we evaluated whether the antibiotic nourseothricin has the same marker selection efficiency as phosphinothricin using separate vectors. Subsequently, in the two vectors containing the nourseothricin and phosphinothricin resistance cassettes were inserted eGFP and mCherry expression cassettes, respectively. These new vectors were then introduced independently into A. tumefaciens and used to transform M. robertsii either in independent events or in one single co-transformation event using an equimolar mixture of A. tumefaciens cultures. The number of transformants obtained by co-transformation was similar to that obtained by the individual transformation events. This method provides an additional strategy for the simultaneous insertion of multiple genes into M. robertsii.

RP4::Mu cts에 의한 Rhizobium leguminosarum 질소고정 유전자의 속간전달에 관한 연구 (Intergeneric Transfer of Nitrogen Fixation Genes from Rhizobium leguminosarum by RP4::Mu cts)

  • 허연주;이영록
    • 미생물학회지
    • /
    • 제24권3호
    • /
    • pp.211-220
    • /
    • 1986
  • Nitrogen fixation (nif) genes of Rhizobium leguminosarum were transferred to nif Klebsiella pneumoniae and E. coli by conjugation after partial heat induction of $RP_4$ :: Mu cts in Rhizobium $R^+$ transconjugant, and the hybrid plasmids in the transconjugant strains were isolated and characterized. In order to transfer the nif genes from Rhizobium, the hybrid plasmid $RP_4$ :: Mu cts was transferred by conjugation from E. coil to the symbiotic nitrogen fixer, R. leguminosarum. After stabillity test, the $RP_4$ :: Mu cts in Rhixobium $R^+$ transconjugant was subjected to partial heat induction by culturing it statically at $38^{\circ}C$ for 16 hours, and then conjugated with the nif defective mutant strains of K. pneumoniae or nif mutant strains of E. coli having whole nif gene plasmid. Recombinant strains of K. pneumoniae, which could grow in a N-free medium and exhibit the nitrogenase activity were selected. However, in the case of E. coli, they could grow well in a NA medium containing antibiotices, but hardly frow in a N-free medium. The hybrid plasmids in these transconjugal strains were isolated by gel electrophoresis and compared their molecular sizes.

  • PDF

Comparative Genomics Study of Candidatus Carsonella Ruddii; an Endosymbiont of Economically Important Psyllids

  • Mondal, Shakhinur Islam;Akter, Elma;Akter, Arzuba;Khan, Md Tahsin;Jewel, Nurnabi Azad
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.373-382
    • /
    • 2020
  • Candidatus Carsonella ruddii is an endosymbiont that resides in specialized cells within the body cavity of plant sap-feeding insects called psyllids. The establishment of symbiotic associations is considered one of the key factors for the evolutionary success of psyllids, as it may have helped them adapt to imbalanced food resources like plant sap. Although C. ruddii is defined as a psyllid primary symbiont, the genes for some essential amino acid pathways are absent. Complete genome sequences of several C. ruddii strains have been published. However, in-depth intra-species comparison of C. ruddii strains has not yet been done. This study therefore aimed to perform a comparative genome analysis of six C. ruddii strains, allowing the interrogation of phylogenetic group, functional category of genes, and biosynthetic pathway analysis. Accordingly, overall genome size, number of genes, and GC content of C. ruddii strains were reduced. Phylogenetic analysis based on the whole genome proteomes of 30 related bacterial strains revealed that the six C. ruddii strains form a cluster in same clade. Biosynthetic pathway analysis showed that complete sets of genes for biosynthesis of essential amino acids, except tryptophan, are absent in six C. ruddii strains. All genes for tryptophan biosynthesis are present in three C. ruddii strains (BC, BT, and YCCR). It is likely that the host may depend on a secondary symbiont to complement its deficient diet. Overall, it is therefore possible that C. ruddii is being driven to extinction and replacement by new symbionts.

흰목이버섯 대량생산을 위한 용기내 재배 최적화 연구 (Optimization of artificial cultivation of Tremella fuciformis in closed culture bottle)

  • 최성우;장현유;윤정원;이찬
    • 한국버섯학회지
    • /
    • 제6권1호
    • /
    • pp.20-26
    • /
    • 2008
  • 흰목이버섯 균주와 공생균을 수집하고 ITS 5.8S rDNA sequencing을 하여 유전자 서열을 분석하였다. Gene Bank Data homology search 결과 분리된 균의 rDNA 서열이 이 Tremella fuciformis AF042409의 rDNA 서열과 99% 일치하는 것으로 확인되었다. 그리고 함께 분리된 공생균은 같은 방법으로 Annulohhypoxylon stygium 으로 확인하였다. 분리된 T. fuciformis KG 103과 A. stygium KG 201 균주는 PD배지에서 각각 14 mm/14 days과 85 mm/14 days의 균사생육을 나타내었다. T. fuciformis KG 103 균주의 생육최적온도는 $25^{\circ}C$ (14mm/14days) 이었으며, $35^{\circ}C$ 고온과 $15^{\circ}C$이하 저온에서 균사 생장이 억제되었다. A. stygium KG 201은 흰목이버섯균과 유사한 최적온도를 나타내었다. T. fuciformis KG 103 균의 생육 최적 pH는 5.0이었으며, A. stygium KG 201도 pH 5.0에서 생육이 가장 왕성하였다. 흰목이버섯 종균용 최적 배지로 참나무톱밥 77.5%, 미강 20%, 석고 1.5%, 황백당 1%가 선정되었다. T. fuciformis KG 103과 A. stygium KG 201혼합 종균을 제조하고 흰목이버섯 자실체생산을 위한 병속재배 방법을 확립하였다. 콘코브(Corn cob) (77%와 52%)가 사용한 재료 중 최적의 자실체 성장률을 나타냈으며, 콘코브 함량을 줄일수록 생육이 저조하였다. 면실박과 참나무톱밥은 단독 사용시 생육이 저조하였고, 콘코브를 첨가시 수율이 증대되었다. 최적수분농도는 55%로 결정되었다.

  • PDF

Post Genomic Approaches to Nodulation in Soybean

  • Hwang, Cheol-Ho;Lim, Chae-Woo
    • The Plant Pathology Journal
    • /
    • 제20권1호
    • /
    • pp.13-17
    • /
    • 2004
  • An interaction between Legumes and Rhizobia establishes a symbiotic new organ, the nodule that supports atmospheric nitrogen fIxation. The specific communications between the microbes and legume plants are necessary for both nodulation and nitrogen fixation. Through genetic and biochemical analyses several genes playing pivotal roles in nodulation had been identified to be a receptor kinase like CALVATAl involved signal transduction for development. This emphasizes peptides as signals to be transmitted for a short or long distance transport for nodulation. In addition, a quorum sensing in rhizobia has become a focus as counterpart signal. In an attempt to reveal proteins factors and signaling molecules acting on nodulation, proteome analyses of nodule and the proteins in apoplast upon communication between Legumes and Rhizobia were performed.

Overexpression of GmAKR1, a Stress-Induced Aldo/keto Reductase from Soybean, Retards Nodule Development

  • Hur, Yoon-Sun;Shin, Ki-Hye;Kim, Sunghan;Nam, Kyoung Hee;Lee, Myeong-Sok;Chun, Jong-Yoon;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.217-223
    • /
    • 2009
  • Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.

repABC- Type Replicator Region of Megaplasmid pAtC58 in Agrobacterium tumefaciens C58

  • LEE KO-EUN;PARK DAE-KYUN;BAEK CHANG-HO;HWANG WON;KIM KUN-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.118-125
    • /
    • 2006
  • The region responsible for replication of the megaplasmid pAtC58 in the nopaline-type Agrobacterium tumefaciens strain C58 was determined. A derivative ofa Co1E1 vector, pBluscript SK-, incapable of autonomous replication in Agrobacterium spp, was cloned with a 7.6-kb Bg1II-HindIII fragment from a cosmid clone of pAtC58, which contains a region adjacent to the operon for the utilization of deoxyfructosyl glutamine (DFG). The resulting plasmid conferred resistance to carbenicillin on the A. tumefaciens strain UIA5 that is a plasmidfree derivative of C58. The plasmid was stably maintained in the strain even after consecutive cultures for generations. Analysis of nested deletions of the 7.6-kb fragment showed that a 4.3-kb BglII-XhoI region sufficiently confers replication of the derivative of the ColE1 vector on UIA5. The region comprises three ORFs, which have high homologies with repA, repB, and repC of plasm ids in virulent Agrobacterium spp. including pTiC58, pTiB6S3, pTi-SAKURA, and pRiA4b as well as those of symbiotic plasmids from Rhizobium spp. Phylogenie analysis showed that rep genes in pAtC58 are more closely related to those in pRiA4 than to pTi plasmids including pTiC58, suggesting that the two inborn plasmids, pTiC58 and pAtC58, harbored in C58 evolved from distinct origins.

Frankia sp. strain SNU 014201의 nif-H, D, K, 유전자 클로닝

  • 권석윤;강명수;안정선
    • 미생물학회지
    • /
    • 제30권1호
    • /
    • pp.30-36
    • /
    • 1992
  • 물오리나무의 뿌리혹에서 분기한 Frankia sp. SNU 014201 공생균주의 게놈내에 13.5 kb의 EcoRI, 18.0 kb 의 BamHI, 10.5 kb의 Bg/II, 4.5 kb의 KpnI 절편에 nif-H, D 유전자가 존재함을 확인하였다. 람다 파아지 EMBI3-BamHI arm을 사용하여 제조한 genomic library 에서 nif유전자를 포함하고 있는 14개의 재조합 파아지 클론을 선별하였다. 이들 중 Ahnif-12번 클론은 nif 유전자를 포함하고 있는 18kb 의 삽입 DNA 를 가지고 있었으며, 이중 7.9 kb 의 BamHI 절편내에 nif-H. D. K가 3.6kb 의 HindIII/KpnI 절편내에 nif D 의 일부와 H 가 위치하고 있었다. 따라서 이등 절편을 각각 subcloning 하고 제한효소 지도를 작성한 결과, Frankia sp. SNU 01420의 nif-H. D. K 유전자는 6.5 kb 의 Hind III/Bam HI 절편과 5.2 kb Sal/IBamHI 절편내에 연속 배열하고 있다.

  • PDF

Symbiotic Microorganisms in Aphids (Homoptera, Insecta): A Secret of One Thriving Insect Group

  • Ishikawa, Hajime
    • Animal cells and systems
    • /
    • 제5권3호
    • /
    • pp.163-177
    • /
    • 2001
  • Most, if not all, aphids harbor intracellular bacterial symbionts, called Buchnera, in their bacteriocytes, huge cells differentiated for this purpose. The association between Buchnera and aphids is so intimate, mutualistic and obligate that neither of them can any longer reproduce independently. Buchnera are vertically transmitted through generations of the host insects. Evidence suggests that Buchnera were acquired by a common ancestor of aphids 160-280 million years ago, and have been diversified, since then, in parallel with their aphid hosts. Molecular phylogenetic analyses indicate that Buchnera belong to the g subdivision of the Proteobacteria. Although Buchnera are close relatives of Escherichia coli, they contain move than 100 genomic copies per cell, and their genome size is only one seventh that of E. coli. The complete genome sequence of Buchnera revealed that their gene repertoire is quite different from those of parasitic bacteria such as Mycoplasma, Rickettsia and Chlamydia, though their genome sizes have been reduced to a similar extent. Whereas these parasitic bacteria have lost most genes for the biosynthesis of amino acids, Buchnera retain many of them. In particular, Buchnera's gene repertoire is characteristic in the richness of the genes for the biosynthesis of essential amino acids that the eukaryotic hosts are not able to synthesize, reflecting a nutritional role played by these symbionts. Buchnera, when housed in the bacteriocyte, selectively synthesize a large amount of symbionin, which is a homolog of GroEL, the major stress protein of E. coli. Symbionin not only functions as molecular chaperone, like GroEL, but also has evolutionarily acquired the phosphotransferase activity through amino acid substitutions. Aphids usually profit from Buchnera's fuction as a nutritional supplier and, when faced with an emergency, consume the biomass of Buchnera cells as nutrient reserves.

  • PDF

The Hypernodulating nts Mutation Induces Jasmonate Synthetic Pathway in Soybean Leaves

  • Seo, Hak Soo;Li, Jinjie;Lee, Sun-Young;Yu, Jae-Woong;Kim, Kil-Hyun;Lee, Suk-Ha;Lee, In-Jung;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.185-193
    • /
    • 2007
  • Symbiotic nitrogen fixation with nitrogen-fixing bacteria in the root nodules is a distinctly beneficial metabolic process in legume plants. Legumes control the nodule number and nodulation zone through a systemic negative regulatory system between shoot and root. Mutation in the soybean NTS gene encoding GmNARK, a CLAVATA1-like serine/threonine receptor-like kinase, causes excessive nodule development called hypernodulation. To examine the effect of nts mutation on the gene expression profile in the leaves, suppression subtractive hybridization was performed with the trifoliate leaves of nts mutant 'SS2-2' and the wild-type (WT) parent 'Sinpaldalkong2', and 75 EST clones that were highly expressed in the leaves of the SS2-2 mutant were identified. Interestingly, the expression of jasmonate (JA)-responsive genes such as vspA, vspB, and Lox2 were upregulated, whereas that of a salicylate-responsive gene PR1a was suppressed in the SS2-2 mutant. In addition, the level of JA was about two-fold higher in the leaves of the SS2-2 mutant than in those of the WT under natural growth conditions. Moreover, the JA-responsive gene expression persists in the leaves of SS2-2 mutant without rhizobia infection in the roots. Taken together, our results suggest that the nts mutation increases JA synthesis in mature leaves and consequently leads to constitutive expression of JA-responsive genes which is irrelevant to hypernodulation in the root.