DOI QR코드

DOI QR Code

Comparative Genomics Study of Candidatus Carsonella Ruddii; an Endosymbiont of Economically Important Psyllids

  • Mondal, Shakhinur Islam (Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology) ;
  • Akter, Elma (Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology) ;
  • Akter, Arzuba (Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology) ;
  • Khan, Md Tahsin (Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology) ;
  • Jewel, Nurnabi Azad (Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology)
  • Received : 2019.12.03
  • Accepted : 2020.04.17
  • Published : 2020.09.28

Abstract

Candidatus Carsonella ruddii is an endosymbiont that resides in specialized cells within the body cavity of plant sap-feeding insects called psyllids. The establishment of symbiotic associations is considered one of the key factors for the evolutionary success of psyllids, as it may have helped them adapt to imbalanced food resources like plant sap. Although C. ruddii is defined as a psyllid primary symbiont, the genes for some essential amino acid pathways are absent. Complete genome sequences of several C. ruddii strains have been published. However, in-depth intra-species comparison of C. ruddii strains has not yet been done. This study therefore aimed to perform a comparative genome analysis of six C. ruddii strains, allowing the interrogation of phylogenetic group, functional category of genes, and biosynthetic pathway analysis. Accordingly, overall genome size, number of genes, and GC content of C. ruddii strains were reduced. Phylogenetic analysis based on the whole genome proteomes of 30 related bacterial strains revealed that the six C. ruddii strains form a cluster in same clade. Biosynthetic pathway analysis showed that complete sets of genes for biosynthesis of essential amino acids, except tryptophan, are absent in six C. ruddii strains. All genes for tryptophan biosynthesis are present in three C. ruddii strains (BC, BT, and YCCR). It is likely that the host may depend on a secondary symbiont to complement its deficient diet. Overall, it is therefore possible that C. ruddii is being driven to extinction and replacement by new symbionts.

Keywords

References

  1. Gray SM, Banerjee N. 1999. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol. Mol. Biol. Rev. MMBR. 63: 128-148. https://doi.org/10.1128/MMBR.63.1.128-148.1999
  2. Blackman RL, Eastop VF. 1984. Aphids on the World's Crops: An Identification and Information Guide, pp. 476. 1st Ed. John Wiley Sons, London.
  3. Sylvester ES. 1985. Multiple acquisition of viruses and vectordependent prokaryotes: consequences on transmission. Ann. Rev. Entomol. 30: 71-88. https://doi.org/10.1146/annurev.en.30.010185.000443
  4. Brown JK, Rehman M, Rogan D, Martin RR, Idris AM. 2010. First report of "Candidatus Liberibacter psyllaurous" (synonym "Ca. L. solanacearum") associated with 'Tomato Vein-Greening' and 'Tomato Psyllid Yellows' diseases in commercial greenhouses in Arizona. Plant Dis. 94: 376.
  5. Munyaneza J, Buchman J, Upton J, Goolsby J, Crosslin J, Bester G, et al. 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Sci. 60: 27-37.
  6. Dan H, Ikeda N, Fujikami M, Nakabachi A. 2017. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLoS One. 12: e0189779. https://doi.org/10.1371/journal.pone.0189779
  7. Baumann P, Moran NA, Baumann L. 2006. Bacteriocyte-Associated Endosymbionts of Insects, pp. 403-438. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-HandStackebrandt E (eds.), Ed. Springer New York, New York, NY.
  8. Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA. 1995. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Ann. Rev. Microbiol. 49: 55-94. https://doi.org/10.1146/annurev.mi.49.100195.000415
  9. Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, Baumann P. 2000. Secondary endosymbionts of psyllids have been acquired multiple times. Curr. Microbiol. 41: 300-304. https://doi.org/10.1007/s002840010138
  10. Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
  11. Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. 2000. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl. Environ. Microbiol. 66: 2898-2905. https://doi.org/10.1128/AEM.66.7.2898-2905.2000
  12. Sacchi L, Genchi M, Clementi E, Negri I, Alma A, Ohler S, et al. 2010. Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophila melanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera). Tissue Cell 42: 328-333. https://doi.org/10.1016/j.tice.2010.07.009
  13. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, et al. 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314: 267. https://doi.org/10.1126/science.1134196
  14. Sloan DB, Moran NA. 2012. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol. 29: 3781-3792. https://doi.org/10.1093/molbev/mss180
  15. Tamames J, Gil R, Latorre A, Pereto J, Silva FJ, Moya A. 2007. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol. Biol. 7: 181. https://doi.org/10.1186/1471-2148-7-181
  16. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402. https://doi.org/10.1186/1471-2164-12-402
  17. Zuo G, Hao B. 2015. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 13: 321-331. https://doi.org/10.1016/j.gpb.2015.08.004
  18. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27: 29-34. https://doi.org/10.1093/nar/27.1.29
  19. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and Ghost-KOALA: KEGG Tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726-731. https://doi.org/10.1016/j.jmb.2015.11.006
  20. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. 2019. Ortho-Venn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47: W52-w58. https://doi.org/10.1093/nar/gkz333
  21. Li L, Stoeckert CJ, Jr., Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13: 2178-2189. https://doi.org/10.1101/gr.1224503
  22. Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30: 1575-1584. https://doi.org/10.1093/nar/30.7.1575
  23. Wu F, Deng X, Liang G, Huang J, Cen Y, Chen J. 2015. Wholegenome sequence of "Candidatus Profftella armatura" from diaphorina citri in Guangdong, China. Genome Announc. 3: e01282-01215.
  24. Riley AB, Kim D, Hansen AK. 2017. Genome sequence of "Candidatus Carsonella ruddii" strain BC, a nutritional endosymbiont of bactericera cockerelli. Genome Announc. 5: e00236-17.
  25. Katsir L, Zhepu R, Piasezky A, Jiang J, Sela N, Freilich S, et al. 2018. Genome sequence of "Candidatus Carsonella ruddii" strain BT from the psyllid bactericera trigonica. Genome Announc. 6: e01466-01417.
  26. Wernegreen JJ. 2005. For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr. Opin. Genet. Dev. 15: 572-583. https://doi.org/10.1016/j.gde.2005.09.013
  27. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, et al. 2002. 50 million years of genomic stasis in endosymbiotic bacteria. Science (New York, N.Y.). 296: 2376-2379. https://doi.org/10.1126/science.1071278
  28. Moran NA, Plague GR. 2004. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14: 627-633. https://doi.org/10.1016/j.gde.2004.09.003
  29. Audic S, Robert C, Campagna B, Parinello H, Claverie JM, Raoult D, et al. 2007. Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet. 3: e138. https://doi.org/10.1371/journal.pgen.0030138
  30. Moran NA. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108: 583-586. https://doi.org/10.1016/S0092-8674(02)00665-7
  31. Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG. 2007. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 23: 511-520. https://doi.org/10.1016/j.tig.2007.08.002
  32. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, et al. 2010. Phylogeny of Gammaproteobacteria. J. Bacteriol. 192: 2305. https://doi.org/10.1128/JB.01480-09
  33. Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T. 2003. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol. Biol. Evol. 20: 907-913. https://doi.org/10.1093/molbev/msg097
  34. Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, et al. 2008. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol. Biol. Evol. 25: 859-868. https://doi.org/10.1093/molbev/msn027
  35. Chaumot A, Da Lage JL, Maestro O, Martin D, Iwema T, Brunet F, et al. 2012. Molecular adaptation and resilience of the insect's nuclear receptor USP. BMC Evol. Biol. 12: 199. https://doi.org/10.1186/1471-2148-12-199
  36. Moran NA, Bennett GM. 2014. The tiniest tiny genomes. Ann. Rev. Microbiol. 68: 195-215. https://doi.org/10.1146/annurev-micro-091213-112901
  37. Baumann P. 2005. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Ann. Rev. Microbiol. 59: 155-189. https://doi.org/10.1146/annurev.micro.59.030804.121041
  38. Gil R, Silva FJ, Pereto J, Moya A. 2004. Determination of the core of a minimal bacterial gene set. Microbiol. Mol. Biol. Rev. 68: 518. https://doi.org/10.1128/MMBR.68.3.518-537.2004
  39. Perez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, et al. 2006. A small microbial genome: the end of a long symbiotic relationship? Science 314: 312-313. https://doi.org/10.1126/science.1130441