Browse > Article
http://dx.doi.org/10.1007/s10059-009-0027-x

Overexpression of GmAKR1, a Stress-Induced Aldo/keto Reductase from Soybean, Retards Nodule Development  

Hur, Yoon-Sun (Department of Biological Science, Sookmyung Women's University)
Shin, Ki-Hye (Department of Biological Science, Sookmyung Women's University)
Kim, Sunghan (Department of Biological Science, Sookmyung Women's University)
Nam, Kyoung Hee (Department of Biological Science, Sookmyung Women's University)
Lee, Myeong-Sok (Department of Biological Science, Sookmyung Women's University)
Chun, Jong-Yoon (Seegene Inc.)
Cheon, Choong-Ill (Department of Biological Science, Sookmyung Women's University)
Abstract
Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.
Keywords
Aldo/keto reductase; Auxin; nodulation; promoter analysis; transgenic hairy root;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Charon, C., Sousa, C., Crespi, M., and Kondorosi, A. (1999). Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11, 1953-1966   DOI   ScienceOn
2 Fehlberg, V., Vieweg, M.F., Dohmann, E.M., Hohnjec, N., Puhler, A., Perlick, A.M., and Kuster, H. (2005). The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J. Exp. Bot. 56, 799-806   DOI   ScienceOn
3 Katagiri, F., Lam, E., and Chua, N.H. (1989). Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340, 727-730   DOI   ScienceOn
4 Sakai, T., Takahashi, Y., and Nagata, T. (1996). Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol. 37, 906-991   DOI   ScienceOn
5 Zhuang, X., Jiang, J., Li, J., Ma, Q., Xu, Y., Xue, Y., Xu, Z., and Chong, K. (2006). Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J. 48, 581-591   DOI   ScienceOn
6 Boot, K., Van Der Zaal, B.J., Velterop, J., Quint, A., Mennes, A.M., Hooykaas, P., and Libbenga, K.R. (1993). Further characterization of expression of auxin-induced genes in Tobacco (Nicotiana tabacum) cell-suspension cultures. Plant Physiol. 102, 513-520   DOI
7 Hyndman, D., Bauman, D.R., Heredia, V.V., and Penning, T.M. (2003). The aldo-keto reductase superfamily homepage. Chem. Biol. Interact. 143-144, 621-631   DOI   ScienceOn
8 Kim, Y.J., Kwak, C.I., Gu, Y.Y., Hwang, I.T., and Chun, J.Y. (2004). Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 36, 424-426, 428, 430 passim
9 Kim, H.B., Lee, H., Oh, C.J., Lee, N.H., and An, C.S. (2007b). Expression of EuNOD-ARP1 encoding auxin-repressed protein homolog is upregulated by auxin and localized to the fixation zone in root nodules of Elaeagnus umbellata. Mol. Cells 23, 115-121
10 Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325-327   DOI   ScienceOn
11 Xiang, C., Miao, Z.H., and Lam, E. (1996). Coordinated activation of as-1-type elements and a tobacco glutathione p-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol. Biol. 32, 415-426   DOI   ScienceOn
12 Lee, M.Y., Shin, K.H., Kim, Y.K., Suh, J.Y., Gu, Y.Y., Kim, M.R., Hur, Y.S., Son, O., Kim, J.S., Song, E., et al. (2005). Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol. 139, 1881-1889   DOI   ScienceOn
13 Mathesius, U., Schlaman, H.R., Spaink, H.P., Of Sautter, C., Rolfe, B.G., and Djordjevic, M.A. (1998). Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14, 23-34   DOI   ScienceOn
14 Foucher, F., and Kondorosi, E. (2000). Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol. Biol. 43, 773-786   DOI   ScienceOn
15 Peer, W.A., and Murphy, A.S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12, 556-563   DOI   ScienceOn
16 Wasson, A.P., Pellerone, F.I., and Mathesius, U. (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617-1629   DOI   ScienceOn
17 de Billy, F., Grosjean, C., May, S., Bennett, M., and Cullimore, J.V. (2001). Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol. Plant Microbe Interact. 14, 267-277   DOI   ScienceOn
18 Niggeweg, R., Thurow, C., Kegler, C., and Gatz, C. (2000). Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem. 275, 19897-19905   DOI   ScienceOn
19 Stacey, G., Libault, M., Brechenmacher, L., Wan, J., and May, G.D. (2006). Genetics and functional genomics of legume nodulation. Curr. Opin. Plant Biol. 9, 110-121   DOI   ScienceOn
20 Acevedo-Hernandez, G.J., Leon, P., and Herrera-Estrella, L.R. (2005). Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J. 43, 506-519   DOI   ScienceOn
21 Johnson, C., Glover, G., and Arias, J. (2001). Regulation of DNA binding and trans-activation by a xenobiotic stress-activated plant transcription factor. J. Biol. Chem. 276, 172-178   DOI   ScienceOn
22 Klinedinst, S., Pascuzzi, P., Redman, J., Desai, M., and Arias, J. (2000). A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol. Biol. 42, 679-688   DOI   ScienceOn
23 Subramanian, S., Stacey, G., and Yu, O. (2007). Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12, 282-285   DOI   ScienceOn
24 Chakravarthy, S., Tuori, R.P., D'Ascenzo, M.D., Fobert, P.R., Despres, C., and Martin, G.B. (2003). The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15, 3033-3050   DOI   ScienceOn
25 Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963-1971   DOI   ScienceOn
26 Martin, H.J., Breyer-Pfaff, U., Wsol, V., Venz, S., Block, S., and Maser, E. (2006). Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics. Drug Metab. Dispos. 34, 464-470
27 Morita, T., Huruta, T., Ashiuchi, M., and Yagi, T. (2002). Characterization of recombinant YakC of Schizosaccharomyces pombe showing YakC defines a new family of aldo-keto reductases. J. Biochem. 132, 635-641   DOI   ScienceOn
28 Kim, Y.K., Son, O., Kim, M.R., Nam, K.H., Kim, G.T., Lee, M.S., Choi, S.Y., and Cheon, C.I. (2007a). ATHB23, an Arabidopsis class I homeodomain-leucine zipper gene, is expressed in the adaxial region of young leaves. Plant Cell Rep. 26, 1179-1185   DOI   ScienceOn
29 Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids ResK 27, 297-300   DOI   ScienceOn
30 Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgen, R. (2003). Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33, 633-650   DOI   ScienceOn
31 Chen, P.W., Chiang, C.M., Tseng, T.H., and Yu, S.M. (2006). Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell 18, 2326-2340   DOI   ScienceOn
32 Jin, Y., and Penning, T.M. (2007). Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. Toxicol. 47, 263-292   DOI   ScienceOn
33 Oldroyd, G.E., and Downie, J.A. (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519-546   DOI   ScienceOn
34 Sieburth, L.E., Muday, G.K., King, E.J., Benton, G., Kim, S., Metcalf, K.E., Meyers, L., Seamen, E., and Van Norman, J.M. (2006). SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 18, 1396-1411   DOI   ScienceOn
35 Jez, J.M., Bennett, M.J., Schlegel, B.P., Lewis, M., and Penning, T.M. (1997). Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J. 326, 625-636   DOI
36 Tiwari, S.B., Hagen, G., and Guilfoyle, T. (2003). The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15, 533-543   DOI   ScienceOn
37 Ulmasov, T., Liu, Z.B., Hagen, G., and Guilfoyle, T.J. (1995). Composite structure of auxin response elements. Plant Cell 7, 1611-1623   DOI   ScienceOn
38 Guilfoyle, T., Hagen, G., Ulmasov, T., and Murfett, J. (1998). How does auxin turn on genes? Plant Physiol. 118, 341-347   DOI   ScienceOn
39 Rombauts, S., Dehais, P., Van Montagu, M., and Rouze, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 27, 295-296   DOI   ScienceOn
40 Ulmasov, T., Hagen, G., and Guilfoyle, T. (1994). The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol. Biol. 26, 1055-1064   DOI   ScienceOn
41 Li, Y., Liu, Z.B., Shi, X., Hagen, G., and Guilfoyle, T.J. (1994). An auxin-inducible element in soybean SAUR promoters. Plant Physiol. 106, 37-43   DOI   ScienceOn
42 Oh, H.S., Son, O., Chun, J.Y., Stacey, G., Lee, M.S., Min, K.H., Song, E.S., and Cheon, C.I. (2001). The Bradyrhizobium japonicum gene exhibits a unique developmental expression pattern in cowpea nodules. Mol. Plant Microbe Interact. 14, 1286-1292   DOI   ScienceOn