• 제목/요약/키워드: Symbioses

Search Result 10, Processing Time 0.02 seconds

Deep-sea Hydrothermal Vents: Ecology and Evolution

  • Won, Yong-Jin
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.175-183
    • /
    • 2006
  • The discovery of deep-sea hydrothermal vents and their ecosystems is a monumental landmark in the history of Ocean Sciences. Deep-sea hydrothermal vents are scattered along the global mid-ocean ridges and back-arc basins. Under sea volcanic phenomena related to underlying magma activities along mid-ocean ridges generate extreme habitats for highly specialized communities of animals. Multidisciplinary research efforts during past three decades since the first discovery of hydrothermal vents along the Galapagos Rift in 1977 revealed fundamental components of physiology, ecology, and evolution of specialized vent communities of micro and macro fauna. Heterogeneous regional geological settings and tectonic plate history have been considered as important geophysical and evolutionary factors for current patterns of taxonomic composition and distribution of vent faunas among venting sites in the World Ocean basins. It was found that these communities are based on primary production of chemosynthetic bacteria which directly utilize reduced compounds, mostly $H_2S$ and $CH_4$, mixed in vent fluids. Symbioses between these bacteria and their hosts, vent invertebrates, are foundation of the vent ecosystem. Gene flow and population genetic studies in parallel with larval biology began to unveil hidden dispersal barrier under deep sea as well as various dispersal characteristics cross taxa. Comparative molecular phylogenetics of vent animals revealed that vent faunas are closely related to those of cold-water seeps in general. In perspective additional interesting discoveries are anticipated particularly with further refined and expanded studies aided by new instrumental technologies.

Potential for artificial symbiosis between marine microalgae and invertebrates: I. survival of marine microalgae injected into the medusa of the moon jellyfish Aurelia aurita

  • Ji Hyun You;Hae Jin Jeong;Sang Ah Park;Se Hee Eom;Hee Chang Kang;Min Ji Kwon
    • ALGAE
    • /
    • v.39 no.3
    • /
    • pp.163-176
    • /
    • 2024
  • Some marine microalgae and cyanobacteria form mutualistic symbioses with diverse invertebrates, particularly cnidarians. Among microalgae, dinoflagellates in the family Symbiodiniaceae are the most well-known symbiotic partners of jellyfish and corals. However, the symbioses involving other dinoflagellate families, nano- and micro-flagellates, diatoms, and cyanobacteria with cnidarians are not well understood. As an initial step, it is essential to explore the survival of these microorganisms inside cnidarians. We monitored the survival of eight microalgal species (nine strains) and one cyanobacterium species every day for seven days after injecting each into the medusa of the moon jellyfish Aurelia aurita. The dinoflagellates Effrenium voratum (free-living [FL] and living-in-coral strains), Cladocopium infistulum, Prorocentrum cordatum, Prorocentrum koreanum, Symbiodinium microadriaticum, the prasinophyte Tetraselmis suecica, the chlorophyte Dunaliella salina, and the raphidophyte Heterosigma akashiwo survived inside the medusa, while the cyanobacterium Synechococcus sp. was not detected. Additionally, E. voratum (FL) survived within the medusa for 60 days and gradually spread to adjacent areas, indicating potential for artificially established symbiosis. The results of this study provide a basis for artificial symbiosis between microalgae and invertebrates.

Isolations of Orchid Mycorrhizal Fungi from the Korean Native Orchid Plants (한국의 자생 난과식물에서 난균근균(蘭菌根菌)(Orchid Mycorrhizal Fungi) 분리)

  • Lee, Sang-Sun;Riew, Hee-Kyun;Paek, Kee-Yoeup
    • The Korean Journal of Mycology
    • /
    • v.25 no.2 s.81
    • /
    • pp.101-110
    • /
    • 1997
  • This study was to identify the orchid mycorrhizal fungi and to test whether the orchid plants antificially inoculated with this fungus showed better growth them uninoculated plants. Symbioses in the root cells of the native plants of Cymbidium goeringii collected were observed and the digestive forms of peletons were also observed in various native roots. Two types of hyphae, thick $(7{\sim}10\;{\mu}m)$ and thin $(2{\sim}4\;{\mu}m)$ in thickness, were conclusively found to be from various native orchid roots. The symbiotic fungus was isolated by several agars and identified as a Rhizoctonia repens or a R. endophytica var. endophytica. Symbioses on the plantlets of C. karnan and Cymbidium hybrid 'Onomoron' were evaluated as the isolates inoculated on oatmeal agars. The growth of plantlets were measured with the formations of mycorrhizae in the roots. R. repens was shown to be the better isolate than the other in growth stimulation of plantlets on oatmeal agars when grown for two months. The two types of hyphae in the root cells under nature were speculated from the different fungal isolates of Rhizoctonia. Further isolates would be needed for application works for the orchid industries.

  • PDF

Effects of Light and Inoculation of Frankia and Alpova diplophloeus on the Tripartite Symbioses Development in Alnus rubra Bong. Seedlings (광도(光度)와 Frankia 질소고정균(窒素固定菌) 및 Alpova diplophloeus 외생균근균(外生菌根菌)의 접종(接種)이 루브라 오리나무 묘목내(苗木內) 삼자공생관계(三者共生關係) 발달(發達)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randy;Miller, Steven
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.306-318
    • /
    • 1995
  • To investigate the effect of low light intensities and the inoculation of Frankia and/or Alpova diplophloeus on the symbioses development and their host growth, red alder(Alnus rubra Bong.) seedlings were grown in an air - filtered walk - in growth chamber with either $N_2$ - fixing Frankia inoculation or N - fertilization and live or dead spore inoculation of the ectomycorrhizal fungus A. diplophloeus(Zeller & Dodge) Trappe & Smith. When they were 20 weeks old, the seedlings were grown under three levels of light intensities of 680, 320 and $220{\mu}mol/m^2/s$ PPFD(photosynthetic photon flux density) for three weeks. PPFD of 220 significantly decreased the development of A. diplophloeus mycorrhizae and nodules, the rates of $N_2$ - fixation and $CO_2$ exchange, and the growth of tile seedlings. PPFD 320 significantly decreased the $CO_2$ exchange rate only. Frankia inoculation significantly increased mycorrhiza formation and seedling growth. Alpova inoculation significantly increased seedling growth but not nodule development and $N_2$ - fixation. None of the symbionts affected $CO_2$ exchange rates. Frankia was more critical for seedling growth and mycorrhizal development than the mycorrhizal fungus for seedling growth and nodule development.

  • PDF

Multiple Symbiotic Associations Found in the Roots of Botrychium ternatum

  • Lee, Jun-Ki;Eom, Ahn-Heum;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.30 no.3
    • /
    • pp.146-153
    • /
    • 2002
  • Two types of mycorrhizae, orchid(OM) and arbuscular mycorrhizae(AM), were observed in the cortical cells of Botrychium ternatum roots. The vesicles or arbuscules of AM fungi were examined and the fresh or digestive pelotons by other species of basidiomycetes were also observed in the roots under light microscope. These symbioses were, as the genomic DNAs extracted from roots of B. ternatum reacted with the specific primers, confirmed with PCR technique, being added to more strong evidences. These discoveries were rarely happened in the roots, especially a fern in nature. OM was observed in the roots of B. ternatum collected from the nationwide areas, whereas AM was only in the roots of B. ternatum collected from Chung-Buk areas. It is speculated that OM are associated with the nitrogen cycle in Islands and the growth of B. ternatum in the inland of Central Korea is related to both the phosphate and nitrogen cycle in the nature. The results suggest that B. ternatum is a typical species with two types of mycorrhizae under various growing conditions.

A methodology for the identification of the postulated initiating events of the Molten Salt Fast Reactor

  • Gerardin, Delphine;Uggenti, Anna Chiara;Beils, Stephane;Carpignano, Andrea;Dulla, Sandra;Merle, Elsa;Heuer, Daniel;Laureau, Axel;Allibert, Michel
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1024-1031
    • /
    • 2019
  • The Molten Salt Fast Reactor (MSFR) with its liquid circulating fuel and its fast neutron spectrum calls for a new safety approach including technological neutral methodologies and analysis tools adapted to early design phases. In the frame of the Horizon2020 program SAMOFAR (Safety Assessment of the Molten Salt Fast Reactor) a safety approach suitable for Molten Salt Reactors is being developed and applied to the MSFR. After a description of the MSFR reference design, this paper focuses on the identification of the Postulated Initiating Events (PIEs), which is a core part of the global assessment methodology. To fulfil this task, the Functional Failure Mode and Effect Analysis (FFMEA) and the Master Logic Diagram (MLD) are selected and employed separately in order to be as exhaustive as possible in the identification of the initiating events of the system. Finally, an extract of the list of PIEs, selected as the most representative events resulting from the implementation of both methods, is presented to illustrate the methodology and some of the outcomes of the methods are compared in order to highlight symbioses and differences between the MLD and the FFMEA.

Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Production

  • Ramasamy, Krishnamoorthy;Joe, Manoharan Melvin;Kim, Ki-Yoon;Lee, Seon-Mi;Shagol, Charlotte;Rangasamy, Anandham;Chung, Jong-Bae;Islam, Md. Rashedul;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.637-649
    • /
    • 2011
  • Soil microorganisms play a major role in improving soil fertility and plant health. Symbiotic arbuscular mycorrhizal fungi (AMF) form a key component of the soil microbial populations. AMF form a mutualistic association with the host plant and exert a positive influence on its growth and nutrient uptake. The establishment of mycorrhizal symbioses with the host plant can positively be influenced by plant growth promoting rhizobacteria through various mechanisms such as increased spore germination and hyphal permeability in plant roots. Though there are evidences that combined interactions between AMF and PGPR can promote the plant growth however mechanisms of these interactions are poorly understood. Better understanding of the interactions between AMF and other microorganisms is necessary for maintaining soil fertility and enhancing crop production. This paper reviews current knowledge concerning the interactions between AMF and PGPR with plants and discusses on enhanced nutrient availability, biocontrol, abiotic stress tolerance and phytoremediation in sustainable agriculture.

Identifying Potential Industrial Symbiosis through GIS Based Resource Circulation Information (GIS 기반 자원순환정보 구축을 통한 잠재적 산업공생관계 파악 연구)

  • Chung, Hyun-Wook;Park, Sun-Hyung;Kim, Jung-Hoon;Lee, Sang-Yoon;Park, Hung-Suck;Kwon, Chang-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.74-90
    • /
    • 2010
  • The objectives of this paper are to introduce the GIS based resource circulation information, and to identify additional(or potential) industrial symbiosis based on existing industrial symbiosis and linkage-pair of industry by material. The resource circulation information contains information of the reuse of materials, water, and energy for all manufacturing companies in Ulsan Metropolitan City. The information can further be classified into the three steps -- input information(raw materials), flow information (products), and output information (by-products). The survey data from 3,768 industries and institutions in Ulsan Metropolitan area were collected and built into the GIS to analyze the mechanism of the industrial symbiosis. The results of this study strongly suggest that there are some additional industrial symbioses using by-products(materials, steam, waste water) and further efforts should be given to make them more effective. We expect that the methodology of building the resource circulation information of this study can be helpful to other local governments that try to build similar system.

Mycorrhizae, mushrooms, and research trends in Korea (균근과 버섯 그리고 국내 연구동향)

  • An, Gi-Hong;Cho, Jae-Han;Han, Jae-Gu
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant's roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizae-mediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.