DOI QR코드

DOI QR Code

Potential for artificial symbiosis between marine microalgae and invertebrates: I. survival of marine microalgae injected into the medusa of the moon jellyfish Aurelia aurita

  • Ji Hyun You (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hae Jin Jeong (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Sang Ah Park (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Se Hee Eom (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hee Chang Kang (Department of Ocean Sciences, College of Natural Sciences, Inha University) ;
  • Min Ji Kwon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2024.04.12
  • Accepted : 2024.09.06
  • Published : 2024.09.23

Abstract

Some marine microalgae and cyanobacteria form mutualistic symbioses with diverse invertebrates, particularly cnidarians. Among microalgae, dinoflagellates in the family Symbiodiniaceae are the most well-known symbiotic partners of jellyfish and corals. However, the symbioses involving other dinoflagellate families, nano- and micro-flagellates, diatoms, and cyanobacteria with cnidarians are not well understood. As an initial step, it is essential to explore the survival of these microorganisms inside cnidarians. We monitored the survival of eight microalgal species (nine strains) and one cyanobacterium species every day for seven days after injecting each into the medusa of the moon jellyfish Aurelia aurita. The dinoflagellates Effrenium voratum (free-living [FL] and living-in-coral strains), Cladocopium infistulum, Prorocentrum cordatum, Prorocentrum koreanum, Symbiodinium microadriaticum, the prasinophyte Tetraselmis suecica, the chlorophyte Dunaliella salina, and the raphidophyte Heterosigma akashiwo survived inside the medusa, while the cyanobacterium Synechococcus sp. was not detected. Additionally, E. voratum (FL) survived within the medusa for 60 days and gradually spread to adjacent areas, indicating potential for artificially established symbiosis. The results of this study provide a basis for artificial symbiosis between microalgae and invertebrates.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (20230018) and the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2021M3I6A1091272; 2021R1A2C1093379; RS-2023-00291696) award to HJJ.

References

  1. Agapakis, C. M., Niederholtmeyer, H., Noche, R. R., et al. 2011. Towards a synthetic chloroplast. PLoS ONE 6:e18 877. doi.org/10.1371/journal.pone.0018877
  2. Alvarez, M., Reynaert, N., Chavez, M. N., et al. 2015. Generation of viable plant-vertebrate chimeras. PLoS ONE 10:e0130295. doi.org/10.1371/journal.pone.0130295
  3. Apprill, A. 2020. The role of symbioses in the adaptation and stress responses of marine organisms. Ann. Rev. Mar. Sci. 12:291-314. doi.org/10.1146/annurev-marine010419-010641
  4. Aranda, M., Li, Y., Liew, Y. J., et al. 2016. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6:39734. doi.org/10.1038/srep39734
  5. Arillo, A., Bavestrello, G., Burlando, B. & Sara, M. 1993. Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar. Biol. 117:159-162. doi.org/10.1007/BF00346438
  6. Banaszak, A. T., Iglestas-Prieto, R. & Trench, R. K. 1993. Scrippsiella velellae sp. nov. (Peridiniales) and Gloeodinium viscum sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidiaria). J. Phycol. 29:517-528. doi.org/10.1111/j.1529-8817.1993.tb00153.x
  7. Chapman, D. M. 1974. Cnidarian histology. In Muscatine, L. & Lenhoff, H. M. (Eds.) Coelenterate Biology: Reviews and New Perspectives. Academic Press, Cambridge, pp. 1-92.
  8. Chavez, M. N., Schenck, T. L., Hopfner, U., et al. 2016. Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials 75:25-36. doi.org/10.1016/j.biomaterials.2015.10.014
  9. Cohen, J. E., Goldstone, A. B., Paulsen, M. J., et al. 2017. An innovative biologic system for photon-powered myocardium in the ischemic heart. Sci. Adv. 3:e1603078. doi.org/10.1126/sciadv.1603078
  10. Colley, N. J. & Trench, R. K. 1983. Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc. R. Soc. Lond. B Biol. Sci. 219:61-82. doi.org/10.1098/rspb.1983.0059
  11. Di Camillo, C., Puce, S., Romagnoli, T., Tazioli, S., Totti, C. & Bavestrello, G. 2005. Relationships between benthic diatoms and hydrozoans (Cnidaria). J. Mar. Biol. Assoc. U. K. 85:1373-1380. doi.org/10.1017/S0025315405012555
  12. Djeghri, N., Pondaven, P., Stibor, H. & Dawson, M. N. 2019. Review of the diversity, traits, and ecology of zooxanthellate jellyfishes. Mar. Biol. 166:147. doi.org/10.1007/s00227-019-3581-6
  13. Douglas, A. E. 2003. Coral bleaching: how and why?. Mar. Pollut. Bull. 46:385-392. doi.org/10.1016/S0025-326X(03)00037-7
  14. Ehrenfeld, C., Veloso-Gimenez, V., Corrales-Orovio, R., Rebolledo, R., Boric, M. P. & Egana, J. T. 2023. Microalgae share key features with human erythrocytes and can safely circulate through the vascular system in mice. Appl. Microbiol. Biotechnol. 107:4621-4633. doi.org/10.1007/s00253-023-12588-z
  15. Fitt, W. K. & Trench, R. K. 1983. Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. J. Cell Sci. 64:195-212. doi.org/10.1242/jcs.64.1.195
  16. Freudenthal, H. D. 1962. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J. Protozool. 9:45-52. doi.org/10.1111/j.1550-7408.1962.tb02579.x
  17. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. doi.org/10.1139/m62-029
  18. Hamilton, T. L., Bryant, D. A. & Macalady, J. L. 2016. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18:325-340. doi.org/10.1111/1462-2920.13118
  19. Intergovernmental Panel on Climate Change. 2023. Contribution of working groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Climate change 2023: synthesis report. Intergovernmental Panel on Climate Change, Geneva, pp. 35-115. doi.org/10.59327/IPCC/AR6-9789291691647
  20. Jeong, H. J., Lee, S. Y., Kang, N. S., et al. 2014. Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium clade E. J. Eukaryot. Microbiol. 61:75-94. doi.org/10.1111/jeu.12088
  21. Jeong, H. J., Yoo, Y. D., Kang, N. S., et al. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. doi.org/10.1073/pnas.1204302109
  22. Jinkerson, R. E., Russo, J. A., Newkirk, C. R., et al. 2022. Cnidarian-Symbiodiniaceae symbiosis establishment is independent of photosynthesis. Curr. Biol. 32:2402-2415. doi.org/10.1016/j.cub.2022.04.021
  23. Kakinuma, Y. 1975. An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull. Mar. Biol. Stn. Asamushi 15:101-113.
  24. Kang, H. C., Jeong, H. J., Lim, A. S., et al. 2023a. Feeding by common heterotrophic protists on the mixotrophic dinoflagellate Ansanella granifera (Suessiaceae, Dinophyceae). Algae 38:57-70. doi.org/10.4490/algae.2023.38.2.24
  25. Kang, H. C., Jeong, H. J., Ok, J. H., et al. 2023b. Food web structure for high carbon retention in marine plankton communities. Sci. Adv. 9:eadk0842. doi.org/10.1126/sciadv.adk0842
  26. LaJeunesse, T. 2002. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141:387-400. doi.org/10.1007/s00227-002-0829-2
  27. LaJeunesse, T. C. 2001. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a "species" level marker. J. Phycol. 37:866-880. doi.org/10.1046/j.1529-8817.2001.01031.x
  28. LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., et al. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28:2570-2580. doi.org/10.1016/j.cub.2018.07.008
  29. Lee, M. J., Jeong, H. J., Jang, S. H., et al. 2016. Most low-abundance "background" Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb. Ecol. 71:771-783. doi.org/10.1007/s00248-015-0724-2
  30. Lee, S. Y., Jeong, H. J. & Lajeunesse, T. C. 2020. Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean. Phycologia 59:515-526. doi.org/10.1080/00318884.2020.1807741
  31. Lewis, L. A. & Muller-Parker, G. 2004. Phylogenetic placement of "zoochlorellae" (Chlorophyta), algal symbiont of the temperate sea anemone Anthopleura elegantissima. Biol. Bull. 207:87-92. doi.org/10.2307/1543583
  32. Lim, A. S. & Jeong, H. J. 2022. Primary production by phytoplankton in the territorial seas of the Republic of Korea. Algae 37:265-279. doi.org/10.4490/algae.2022.37.11.28
  33. Mammone, M., Sharp, V., Hewitt, M. & Medina, M. 2023. The influence of photosymbiosis in Cassiopea xamachana regenerative success. Symbiosis 90:61-70. doi.org/10.1007/s13199-023-00920-0
  34. Moffitt, S. E., Hill, T. M., Roopnarine, P. D. & Kennett, J. P. 2015. Response of seafloor ecosystems to abrupt global climate change. Proc. Natl. Acad. Sci. U. S. A. 112:4684-4689. doi.org/10.1073/pnas.1417130112
  35. Mutalipassi, M., Riccio, G., Mazzella, V., et al. 2021. Symbioses of cyanobacteria in marine environments: ecological insights and biotechnological perspectives. Mar. Drugs 19:227. doi.org/10.3390/md19040227
  36. Newkirk, C. R., Frazer, T. K. & Martindale, M. Q. 2018. Acquisition and proliferation of algal symbionts in bleached polyps of the upside-down jellyfish, Cassiopea xamachana. J. Exp. Mar. Bio. Ecol. 508:44-51. doi.org/10.1016/j.jembe.2018.08.010
  37. O'Brien, T. L. & Wyttenbach, C. R. 1980. Some effects of temperature on the symbiotic association between zoochlorellae (Chlorophyceae) and the sea anemone Anthopleura xanthogrammica. Trans. Am. Micr. Soc. 99: 221-225. doi.org/10.2307/3225711
  38. Ok, J. H., Jeong, H. J., Kang, H. C., et al. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283. doi.org/10.4490/algae.2021.36.11.28
  39. Ok, J. H., Jeong, H. J., Kang, H. C., et al. 2023a. Protists in hypoxic waters of Jinhae Bay and Masan Bay, Korea, based on metabarcoding analyses: emphasizing surviving dinoflagellates. Algae 38:265-281. doi.org/10.4490/algae.2023.38.12.6
  40. Ok, J. H., Jeong, H. J., Lim, A. S., et al. 2023b. Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae). Algae 38:39-55. doi.org/10.4490/algae.2023.38.2.28
  41. Ok, J. H., Jeong, H. J., You, J. H., et al. 2024. Interactions between the calanoid copepod Acartia hongi and the bloom-forming dinoflagellates Karenia bicuneiformis and K. selliformis. Mar. Biol. 171:112. doi.org/10.1007/s00227-024-04427-0
  42. Ovchinnikova, T. V., Balandin, S. V., Aleshina, G. M., et al. 2006. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem. Biophys. Res. Commun. 348:514-523. doi.org/10.1016/j.bbrc.2006.07.078
  43. Ozugur, S., Chavez, M. N., Sanchez-Gonzalez, R., Kunz, L., Nickelsen, J. & Straka, H. 2021. Green oxygen power plants in the brain rescue neuronal activity. iScience 24:103158. doi.org/10.1016/j.isci.2021.103158
  44. Radecker, N., Raina, J.-B., Pernice, M., et al. 2018. Using Aiptasia as a model to study metabolic interactions in cnidarian-Symbiodinium symbioses. Front. Physiol. 9:214. doi.org/10.3389/fphys.2018.00214
  45. Rahat, M. & Adar, O. 1980. Effect of symbiotic zooxanthellae and temperature on budding and strobilation in Cassiopeia andromeda (Eschscholz). Biol. Bull. 159:394-401. doi.org/10.2307/1541102
  46. Sachs, J. L. & Wilcox, T. P. 2006. A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc. R. Soc. B. 273:425-429. doi.org/10.1098/rspb.2005.3346
  47. Sellner, K. G. 1997. Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol. Oceanogr. 42:1089-1104. doi.org/10.4319/lo.1997.42.5_part_2.1089
  48. Sharp, V., Kerwin, A. H., Mammone, M., et al. 2024. Host-symbiont plasticity in the upside-down jellyfish Cassiopea xamachana: strobilation across symbiont genera. Front. Ecol. Evol. 12:1333028. doi.org/10.3389/fevo.2024.1333028
  49. Starzak, D. E., Quinnell, R. G., Cook, C. B. & Davy, S. K. 2020. Influence of symbiont species on the glycerol and glucose pools in a model cnidarian-dinoflagellate symbiosis. Biol. Bull. 239:143-151. doi.org/10.1086/710349
  50. Thacker, R. W. & Starnes, S. 2003. Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar. Biol. 142:643-648. doi.org/10.1007/s00227-002-0971-x
  51. Thornhill, D. J., Daniel, M. W., LaJeunesse, T. C., Schmidt, G. W. & Fitt, W. K. 2006. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Biol. Ecol. 338:50-56. doi.org/10.1016/j.jembe.2006.06.032
  52. Trench, R. K., Colley, N. J. & Fitt, W. K. 1981. Recognition phenomena in symbioses between marine invertebrates and "zooxanthellae"; uptake, sequestration and persistence. Ber. Deutsch. Bot. Ges. Bd. 94:529-545. doi.org/10.1111/j.1438-8677.1981.tb03424.x
  53. Trench, R. K. & Thinh, L.-V. 1995. Gymnodinium linucheae sp. nov.: the dinoflagellate symbiont of the jellyfish Linuche unguiculata, Eur. J. Phycol. 30:149-154. doi.org/10.1080/09670269500650911
  54. Yang, F., Long, C., Wei, Z. & Long, L. 2020. Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae). J. Phycol. 56:1208-1215. doi.org/10.1111/jpy.13007
  55. Yellowlees, D., Rees, T. A. V. & Leggat, W. 2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31:679-694. doi.org/10.1111/j.1365-3040.2008.01802.x
  56. You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. doi.org/10.4490/algae.2020.35.2.28
  57. You, J. H., Jeong, H. J., Ok, J. H., et al. 2023. Effects of temperature on the autotrophic and mixotrophic growth rates of the dinoflagellate Biecheleria cincta and its spatiotemporal distributions under current temperature and global warming conditions. Mar. Biol. 170:15. doi.org/10.1007/s00227-022-04167-z