Browse > Article
http://dx.doi.org/10.5141/JEFB.2006.29.2.175

Deep-sea Hydrothermal Vents: Ecology and Evolution  

Won, Yong-Jin (Department of Life Sciences, Ewha Womans University)
Publication Information
Journal of Ecology and Environment / v.29, no.2, 2006 , pp. 175-183 More about this Journal
Abstract
The discovery of deep-sea hydrothermal vents and their ecosystems is a monumental landmark in the history of Ocean Sciences. Deep-sea hydrothermal vents are scattered along the global mid-ocean ridges and back-arc basins. Under sea volcanic phenomena related to underlying magma activities along mid-ocean ridges generate extreme habitats for highly specialized communities of animals. Multidisciplinary research efforts during past three decades since the first discovery of hydrothermal vents along the Galapagos Rift in 1977 revealed fundamental components of physiology, ecology, and evolution of specialized vent communities of micro and macro fauna. Heterogeneous regional geological settings and tectonic plate history have been considered as important geophysical and evolutionary factors for current patterns of taxonomic composition and distribution of vent faunas among venting sites in the World Ocean basins. It was found that these communities are based on primary production of chemosynthetic bacteria which directly utilize reduced compounds, mostly $H_2S$ and $CH_4$, mixed in vent fluids. Symbioses between these bacteria and their hosts, vent invertebrates, are foundation of the vent ecosystem. Gene flow and population genetic studies in parallel with larval biology began to unveil hidden dispersal barrier under deep sea as well as various dispersal characteristics cross taxa. Comparative molecular phylogenetics of vent animals revealed that vent faunas are closely related to those of cold-water seeps in general. In perspective additional interesting discoveries are anticipated particularly with further refined and expanded studies aided by new instrumental technologies.
Keywords
Chemosynthetic bacteria; Hydrothermal vent; Mid-Ocean Ridge; Molecular Phylogenetics; Symbioses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Black MB, Halanych KM, Maas PAY, Hoeh WR, Hashimoto J, Desbruyères D, et al. 1997. Molecular systematics of vestimentiferan tube worms from hydrothermal vents and cold-water seeps. Mar Biol 130: 141-149   DOI
2 Belkin S, Nelson DC, Jannasch HW. 1986. Symbiotic assimilation of $CO_2$ in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol Bull 170: 110-121   DOI
3 Craddock C, Hoeh WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RJ. 1995a. Evolutionary relationships among deepsea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar Biol 121: 477-485   DOI
4 Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC. 2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66: 651-658   DOI
5 Goffredi SK, Waren A, Orphan VJ, Van Dover CL, Vrijenhoek RC. 2004. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70: 3082-3090   DOI
6 Black MB, Lutz RA, Vrijenhoek RC. 1994. Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the Eastern Pacific. Mar Biol 120: 33-39
7 Black MB, Trivedi A, Maas P, Lutz RA, Vrijenhoek RC. 1998. Population genetics and biogeography of vestimentiferan tube worms. Deep See Res II 45: 365-382   DOI   ScienceOn
8 Boss KJ, Turner RD. 1980. The giant white clam from the Galapagos rift, Calyptogena magnifica species novum. Malacologia 20: 161-194
9 Cary SC, Fisher CR, Felbeck H. 1988. Mussel growth supported by methane as sole carbon and energy source. Science 240: 78-80   DOI   ScienceOn
10 Cary SC, Warren W, Anderson E, Giovannoni SJ. 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotech 2: 51-62
11 Cavanaugh CM. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302: 58- 61   DOI
12 Cavanaugh CM. 1994. Microbial symbiosis: Patterns of diversity in the marine environment. Am Zool 34: 79-89   DOI
13 Childress JJ, Fisher CR, Brooks JM, Kennicutt MC, II, Bidigare R, Anderson AE. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: Mussels fueled by gas. Science 233: 1306-1308   DOI   ScienceOn
14 Lutz RA, Kennish MJ. 1993. Ecology of deep-sea hydrothermal vent communities: A review. Rev Geophys 31: 211-242   DOI   ScienceOn
15 Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR. 2000a. Do mussels take wooden steps to deep-sea vents? Nature 403: 725-726   DOI   ScienceOn
16 Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR. 2000b. Marine ecology: Do mussels take wooden steps to deep-sea vents? Nature 403: 725   DOI   ScienceOn
17 Endow K, Ohta S. 1989. The symbiotic relationship between bacteria and a mesogastropod snail, Alviniconcha hessleri, collected from hydrothermal vents of the Mariana Back-Arc Basin. Bull Jap Soc Micro Ecol 3: 73-82   DOI
18 Felbeck H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213: 336-338   DOI
19 Felbeck H, Childress JJ, Somero GN. 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 291-293
20 Fisher CR. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquatic Sci 2: 399-436
21 Fisher CR, Childress JJ, Oremland RS, Bidigare RR. 1987. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96: 59-71   DOI
22 Fujio S, Imasato N. 1991. Diagnostic calculation for circulation and water mass movement in the deep pacific. J Geophys Res 96: 759-774   DOI
23 Gage JD, Tyler PA. 1991. Deep Sea Biology: a Natural history of Organisms at the Deep-Sea Floor. Cambridge, Cambridge University Press
24 Goffredi SK, Hurtado LA, Hallam SJ, Vrijenhoek RC. 2003. Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the 'pacifica/lepta' species complex. Mar Biol 142: 311-320   DOI
25 Hurtado LA, Lutz RA, Vrijenhoek RC. 2004. Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Mol Ecol 13: 2603-2615   DOI   ScienceOn
26 Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC. 2003. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69: 2058-2064   DOI
27 Jacobs DK, Lindberg DR. 1998. Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas. Proc Natl Acad Sci USA 95: 9396-9401
28 Jones ML. 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull Biol Soc Wash 6: 117-158
29 Jones WJ, Won Y-J, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC. 2005. Evolution of habitat use by deep-sea mussels. Mar Biol 148: 841-851
30 Kenk VC, Wilson BR. 1985. A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift zone. Malacologia 26: 253-271
31 Lupton JE, Craig H. 1981. A major helium-3 source at 15$^{\circ}$S on the East Pacific Rise. Science 214: 13-18   DOI   ScienceOn
32 Lutz RA. 1988. Dispersal of organisms at deep-sea hydrothermal vents: a review. Oceanol Acta Special Vol: 23-30
33 Pradillon F, Shillito B, Young C, Gaill F. 2001. Developmental arrest in vent worm embryos. Nature 413: 698-699   DOI   ScienceOn
34 Halanych KM, Feldman RA, Vrijenhoek RC. 2001. Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not frenulate pogonophorans (Siboglinidae, Annelida). Biol Bull 201: 65-75   DOI   ScienceOn
35 Lutz RA, Jablonski D, Rhoads DC, Turner RD. 1980. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift. Mar Biol 57: 127-133   DOI
36 Grassle JF. 1986. The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol 23: 301-362
37 Macpherson E, Jones WJ, Segonzac M. 2005. A new squat lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge. Zoosystema 27
38 Marsh AG, Mullineaux LS, Young CM, Manahan DT. 2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411: 77-80   DOI   ScienceOn
39 McHugh D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc Natl Acad Sci USA 94: 8006-8009
40 Mullineaux LS, Weibe PH, Baker ET. 1995. Larvae of benthic invertebrates in hydrothermal vent plumes over the Juan de Fuca Ridge. Mar Biol 122: 585-596   DOI
41 Nelson DC, Fisher CR. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea hydrothermal vents. In: The microbiology of deep-sea hydrothermal vents, (Karl DM, Raton B, eds) CRC Press, Florida, pp 125-167
42 Nelson K, Fisher C. 2000. Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28: 1-15
43 Olu K, Duperret A, Sibuet M, Foucher J-P, Fiala-Medioni A. 1996. Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Mar Ecol Prog Ser 132: 109-125   DOI
44 Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, et al. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226: 965- 967   DOI   ScienceOn
45 Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC. 1998. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95: 9962-9966
46 Powell MA, Somero GN. 1985. Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169: 164-181   DOI
47 Robinson JJ, Polz MF, Fiala-Medioni A, Cavanaugh CM. 1998. Physiological and immunological evidence for two distinct C1- utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar Biol 132: 625-633   DOI
48 Rouse GW, Goffredi SK, Vrijenhoek RC. 2004. Osedax: boneeating marine worms with dwarf males. Science 305: 668-671   DOI   ScienceOn
49 Salerno JL, Macko SA, Hallam SJ, Bright M, Won Y-J, McKiness Z, et al. 2005. Characterization of symbiont populations in lifehistory stages of mussels from chemosynthetic environments. Biol Bull 208: 145-155   DOI
50 Southward E. 1999. Development of Perviata and Vestimentifera (Pogonophora). Hydrobiologia 402: 185-202   DOI   ScienceOn
51 Southward EC. 1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. J Mar Biol Assoc UK 68: 465-487   DOI
52 Stein JL, Cary SC, Hessler RR, Ohta S, Vetter RD, Childress JJ, et al. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol Bull 174: 373-378   DOI
53 Tunnicliffe V, McArthur AG, Mchugh D. 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34: 353-442   DOI
54 Turner RD, Lutz RA, Jablonski D. 1985. Modes of molluscan larval development at deep-sea hydrothermal vents. Biol Soc Wash Bull 6: 167-184
55 Tyler PA, Young CM. 1999. Reproduction and dispersal at vents and cold seeps. J Mar Biol Assoc UK 79: 193-208   DOI   ScienceOn
56 Vrijenhoek RC. 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J Heredity 88: 285-293   DOI   ScienceOn
57 Vrijenhoek RC, Shank T, Lutz RA. 1998. Gene flow and dispersal in deep-sea hydrothermal vent animals. Cah Biol Mar 39: 363-366
58 Waren A, Bengtson S, Goffredi SK, Van Dover CL. 2003. A hotvent gastropod with iron sulfide dermal sclerites. Science 302: 1007   DOI   ScienceOn
59 Watabe H, Hashimoto J. 2002. A new species of the genus Rimicaris (Alvinocarididae: Caridea: Decapoda) from the active hydrothermal vent field, 'Kairei Field,' on the Central Indian Ridge, the Indian Ocean. Zool Sci 19: 1167-1174   DOI   ScienceOn
60 Won Y, Young CR, Lutz RA, Vrijenhoek RC. 2003b. Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Mol Ecol 12: 169-184   DOI   ScienceOn
61 Won Y-J, Hallam SJ, O'Mullan GD, Pan IL, Buck KR, Vrijenhoek RC. 2003a. Environmental acquisition of thiotrophic endosymbionts by deep-seea mussel of the genus Bathymodiolus. Appl Environ Microbiol 69: 6785-6792   DOI
62 Won Y-J, Maas PAY, Dover CLV, Vrijenhoek RC. 2002. Habitat reversal in vent and seep mussels: seep species, Bathymodiolus heckerae, derived from vent ancestors. Cah Biol Mar 34: 387- 390
63 Young CM. 1994. A tale of two dogmas: the early history of deepsea reproductive biology. In: Reproduction, larval biology, and recruitment of the deep-sea benthos, (Young CM, Eckelberger KJ, eds) Columbia University Press, New York, pp 1-25
64 Van Dover CL. 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton
65 Rau GH, Hedges JI. 1979. Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source. Science 203: 648-649   DOI   ScienceOn
66 Kojima S, Hashimoto T, Hasegawa M, Murata S, Ohta S, Seki H, et al. 1993. Close phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by the amino acid sequence of elongation factor-1a. J Mol Evol 37: 66-70
67 Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295: 1253-1257   DOI   ScienceOn
68 France SC, Hessler RR, Vrijenhoek RC. 1992. Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris. Mar Biol 114: 551-559   DOI
69 Cary SC, Cottrell MT, Stein JL, Camacho F, Desbruyeres D. 1997. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63: 1124-1130
70 Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible Chemoautotrophic symbionts. Science 213: 340-342   DOI
71 Endow K, Ohta S. 1990. Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar Ecol Prog Ser 64: 309-311   DOI
72 Van Dover CL, Hessler RR. 1990. Spatial variation in faunal composition of hydrothermal vent communities on the East Pacific Rise and Galapagos spreading center. In: Gorda Ridge: A Seafloor Spreading Center in the United States' Exclusive Economic Zone, (McMurray GR, eds). Springer-Verlag New York Inc., New York, pp 253-264
73 Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, et al. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294: 818-823   DOI   ScienceOn
74 Peek A, Gustafson R, Lutz R, Vrijenhoek R. 1997. Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): Results from the mitochondrial cytochrome oxidase subunit I. Mar Biol 130: 151-161   DOI
75 Rouse GW, Fauchald K. 1995. The articulation of annelids. Zool Scr 24: 269-301   DOI
76 Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA. 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9$^{\circ}$ 50'N East Pacific Rise). Deep Sea Res II 45: 465-515   DOI   ScienceOn
77 Van Dover CL. 1990. Biogeography of hydrothermal vent communities along seafloor spreading centers. Trends Ecol Evol 5: 242-246   DOI   ScienceOn
78 Spiess FN, Macdonald KC, Atwater T, Ballard R, Carranza A, Cordoba D, et al. 1980. East Pacific Rise: hot springs and geopysical experiments. Science 207: 1421-1433   DOI   ScienceOn
79 Grassle JF. 1985. Hydrothermal vent animals: distribution and biology. Science 229: 713-717   DOI   ScienceOn
80 Little CTS, Vrijenhoek RC. 2003. Are hydrothermal vent animals living fossils? Trends Ecol Evol 18: 582-588   DOI   ScienceOn
81 Young CM, Vazquez E, Metaxas A, Tyler PA. 1996. Embryology of vestimentiferan tube worms from deep-sea methane/sulphide seeps. Nature 381: 514-516   DOI   ScienceOn
82 Sibuet M, Olu K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45: 517-567   DOI   ScienceOn
83 Scheltema RS. 1986. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39: 290-322
84 Corliss JB, Ballard RD. 1977. Oasis of life in the cold abyss. National Geographic 152: 441-453
85 Fiala-Medioni A, Alayse AM, Cahet G. 1986. Evidence of in situ uptake and incorporation of bicarbonate and amino acids by a hydrothermal vent mussel. J Exp Mar Biol and Ecol 96: 191-198   DOI   ScienceOn
86 Tunnicliffe V, Fowler MR. 1996. Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379: 531-533   DOI
87 Rau GH. 1981. Hydrothermal vent clam and tube worm $^{13}C/^{12}C$: Further evidence of nonphotosynthetic food sources. Science 213: 338-340   DOI
88 Karl SA, Schutz SJ, Desbruyeres D, Lutz RA, Vrijenhoek RC. 1996. Molecular analysis of gene flow in the hydrothermal-vent clam Calyptogena magnifica. Mol Mar Biol Biotech 5: 193-202
89 Craddock C, Hoeh WR, Lutz RA, Vrijenhoek RC. 1995b. Extensive gene flow in the deep-sea hydrothermal vent mytilid Bathymodiolus thermophilus. Mar Biol 124: 137-146   DOI
90 Fiala-Medioni A, McKiness ZP, Dando P, Boulegue J, Mariotti A, Alayse-Danet AM, et al. 2002. Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141: 1035-1044   DOI
91 Herry A, Diouris M, Le Pennec M. 1989. Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101: 305-312   DOI
92 Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325: 346-348   DOI
93 Palumbi SR. 1994. Genetic divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25: 547-572   DOI
94 Newman WA. 1985. The abyssal hydrothermal vent invertebrate fauna, a glimpse of antiquity? Bull Biol Soc Wash 6: 231-242
95 Jones ML, Gardiner SL. 1988. Evidence for a transient digestive tract in Vestimentifera. Proc Biol Soc Wash 101: 423-433
96 Edwards DB, Nelson DC. 1991. DNA-DNA solution hybridization studies of the bacterial symbonts of hydrothermal vent tube worms (Riftia pachyptila and Tevnia jerichonana). Appl Environ Microbiol 57: 1082-1088
97 Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC. 1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Bio Biotech 6: 268-277
98 Cavanaugh CM, Wirsen CO, Jannasch HW. 1992. Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58: 3799-3803
99 Cary SC, Giovannoni SJ. 1993. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90: 5695-5699
100 Fiala-Medioni A, Felbeck H. 1990. Autotrophic processes in invertebrate nutrition: Bacterial symbiosis in bivalve molluscs. Comp Physiol 5: 49-69
101 Distel DL, Lee HK, Cavanaugh CM. 1995. Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92: 9598-9602