Browse > Article
http://dx.doi.org/10.7745/KJSSF.2011.44.4.637

Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Production  

Ramasamy, Krishnamoorthy (Department of Agricultural Chemistry, Chungbuk National University)
Joe, Manoharan Melvin (Department of Agricultural Chemistry, Chungbuk National University)
Kim, Ki-Yoon (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Seon-Mi (Department of Agricultural Chemistry, Chungbuk National University)
Shagol, Charlotte (Department of Agricultural Chemistry, Chungbuk National University)
Rangasamy, Anandham (Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University)
Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University)
Islam, Md. Rashedul (Department of Biology and Oceanography, Inha University)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.44, no.4, 2011 , pp. 637-649 More about this Journal
Abstract
Soil microorganisms play a major role in improving soil fertility and plant health. Symbiotic arbuscular mycorrhizal fungi (AMF) form a key component of the soil microbial populations. AMF form a mutualistic association with the host plant and exert a positive influence on its growth and nutrient uptake. The establishment of mycorrhizal symbioses with the host plant can positively be influenced by plant growth promoting rhizobacteria through various mechanisms such as increased spore germination and hyphal permeability in plant roots. Though there are evidences that combined interactions between AMF and PGPR can promote the plant growth however mechanisms of these interactions are poorly understood. Better understanding of the interactions between AMF and other microorganisms is necessary for maintaining soil fertility and enhancing crop production. This paper reviews current knowledge concerning the interactions between AMF and PGPR with plants and discusses on enhanced nutrient availability, biocontrol, abiotic stress tolerance and phytoremediation in sustainable agriculture.
Keywords
Arbuscular mycorrhizal fungi; Co-inoculation; Endosymbiotic bacteria; PGPR; Stress tolerance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Porras-Soriano, A., M.L. Soriano-Martin, A. Porras-Piedra, and R. Azcon. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiol. 166:1350-1359.   DOI   ScienceOn
2 Puppi, G., R. Azcon, and G. Hoflich. 1994. Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. p. 201-215. In S. Gianinazzi, and H. Schuepp (ed.) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, Switzerland.
3 Rambelli, A. 1973. The rhizosphere of mycorrhizae. p. 299-343. In G.L. Marks, and T.T. Koslowski (ed.) Ectomycorrhizae. Academic Press, New York.
4 Ravnskov, S. and I. Jakobsen. 1999. Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329-334.   DOI   ScienceOn
5 Robertson, G.P. and S.M. Swinton. 2005. Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front. Ecol. Environ. 3:39-46.
6 Rodriguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15-21.   DOI
7 Roesti, D., R. Gaur, B.N. Johri, G. Imfeld, S. Sharma, K. Kawaljeet, and M. Aragno. 2006. Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38:1111-1120.   DOI   ScienceOn
8 Ruiz-Sancheza, M., E. Armadab, Y. Munoza, I.E. Garcia de Salamonec, R. Arocab, J.M. Ruiz-Lozanob, and R. Azcon. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under wellwatered and drought conditions. J. Plant Physiol. 168:1031-1037.   DOI   ScienceOn
9 Ryu, J.H., M. Madhaiyan, S. Poonguzhali, W.J. Yim, P. Indiragandhi, K.A. Kim, R. Anandham, J.C. Yun, and T.M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on the growth of tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 16:1622-1628.
10 Sabannavar, S.J. and H.C. Lakshman. 2009. Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J. Agric. Sci. 5:470-479.
11 Meixner, C., J. Ludwig-Muller, O. Miersch, P. Gresshoff, C. Staehelin, and H. Vierheilig. 2005. Lack of mycorrhizal auto regulation and phytohormonal changes in the super nodulating soybean mutant nts1007. Planta 222:709-715.   DOI   ScienceOn
12 Minerdi, D., R. Fani, R. Gallo, A. Boarino, and P. Bonfante. 2001. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67:725-732.   DOI   ScienceOn
13 Mirzakhani, M., M.R. Ardakani, A. Aeene Band, F. Rejali, and A.H. Shirani rad. 2009. Response of spring safflower to coinoculation with Azotobacter chroococum and Glomus intraradices under different levels of nitrogen and phosphorus. Am. J. Agric. Biol. Sci. 4:255-261.   DOI
14 Morgenstern, E. and Y. Okon. 1987. The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolour x Sorghum sudanense. Arid Soil Res. Rehabil. 1:115-127.   DOI   ScienceOn
15 Mosse, B. 1970. Honey-coloured, sessile endogone spores. II. Changes in fine structure during spore development. Arch. Microbiol. 74:129-145.
16 Murty, M.G. and J.K. Ladha, 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108:281-285.   DOI   ScienceOn
17 Ophir, T. and D.L. Gutnick. 1994. A role of exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60:740-745.
18 Ordookhani, K. and M. Zare. 2011. Effect of Pseudomonas, Azotobacter and arbuscular mycorrhiza fungi on lycopene, antioxidant activity and total soluble solid in tomato (Lycopersicon Esculentum F1 Hybrid, Delba). Adv. Environ. Biol. 5:1290-1294.
19 Ordookhani, K., K. Khavazi, A. Moezzi, and F. Rejali. 2010. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African J. Agric. Res. 5: 1108-1116.
20 Orhan, E., A. Esitken, S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic-Amsterdam. 111:38-43.   DOI   ScienceOn
21 Poonguzhali, S., M. Madhaiyan, and T.M. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18:773-777.
22 Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J.P. Grime, A. Hector, D.U. Hooper, M.A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D.A. Wardle. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804-808.   DOI   ScienceOn
23 Ludwig-Muller, J. and M. Guther. 2007. Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav. 2:194-196.   DOI
24 Madhaiyan, M., S. Poonguzhali, J.H. Ryu, and T.M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268-278.   DOI   ScienceOn
25 Madhaiyan, M., S. Poonguzhali, and T.M. Sa. 2007. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium spp. and interactions with auxins and ACC regulation of ethylene in canola. Planta 226:867-876.   DOI   ScienceOn
26 Madhaiyan, M., S. Poonguzhali, B.G. Kang, Y.J. Lee, J. B. Chung, and T.M. Sa. 2010. Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71-82.   DOI
27 Marschner, P. and S. Timonen, 2005. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl. Soil Ecol. 28:23-36.   DOI   ScienceOn
28 Marulanda, A., J.M. Barea, and R. Azcon. 2006. An indigenous drought tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb. Ecol. 52:670-678.   DOI   ScienceOn
29 Marulanda, A., J.M. Barea, and R. Azcon. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28: 115-24.   DOI   ScienceOn
30 Abeles, F.B., P.W. Morgan, and M.E. Saltveit. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, California.
31 Marulanda A., R. Azcon, J.M. Ruiz-Lozano, and R. Aroca. 2008. Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J. Plant Growth Regul. 27:10-18.   DOI   ScienceOn
32 Mayo, K., R.E. Davis, and J. Motta. 1986. Stimulation of germination of spores of Glomus versiforme by spore associated bacteria. Mycologia 78:426-431.   DOI
33 Karandashov, V. and M. Bucher. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10:22-29.   DOI   ScienceOn
34 Akkopru, A. and S. Demir. 2005. Biological control of fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153:544-550.   DOI   ScienceOn
35 Alexandratos, N. 1999. World food and agriculture: outlook for the medium and longer term. Proc. Natl. Acad. Sci. 96:5908- 5914.   DOI   ScienceOn
36 Antunes, P.M., D. Deaville, and M.J. Goss. 2006. Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza 16:167-173.   DOI   ScienceOn
37 Johansson, J.F., L.R. Paul, and R.D. Finley. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48:1-13.   DOI   ScienceOn
38 Jongdee, B., S. Fukai, and M. Cooper. 2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 76:153-63.   DOI
39 Karlidag, H., A. Esitken, M. Turan, and F. Sahin. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic-Amsterdam 114:16-20.   DOI   ScienceOn
40 Kim, K., W.J. Yim, P. Trivedi, M. Madhaiyan, H.P. Deka Boruah, Md. Rashedul Islam, G. Lee, and T.M. Sa. 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429-440.   DOI
41 Kloepper, J.W., R. Lifshitz, and R.M. Zablotowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39-43.   DOI   ScienceOn
42 Kohler, J., F. Caravaca, and A. Roldan. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42:429-434.   DOI   ScienceOn
43 Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage. 22:298-304.   DOI   ScienceOn
44 Linderman, R.G. 1994. Role of VAM fungi in biocontrol. p. 1-26. In G.J. Bethlenfalvay and R.G. Linderman (ed.) Mycorrhizae and plant health. APS Press, St Paul, Minnesota.
45 Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480-487.   DOI   ScienceOn
46 Lee, J. and C.F. Scagel. 2009. Chicoric acid found in basil (Ocinum basilicum L.) leaves. Food Chem. 115:650-656.   DOI   ScienceOn
47 Linderman, R.G. 1988. Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathol. 78:366-371.
48 Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128:197-210.   DOI   ScienceOn
49 Glick, B.R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56:291-312.   DOI
50 Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190:63-68.   DOI   ScienceOn
51 Hazarika, D.K. and A.K. Phookan. 2003. Combination of Glomus fasciculatum with Pseudomonas fluorescens and Trichoderma harzianum: Effect on biocontrol potential and growth promotion in tea seedling. p. 289-294. In Proceedings of 6th International PGPR Workshop, 5-10 October 2003, Calcutta, India.
52 He, Z.L., X.E. Yang, and P.J. Stoffella. 2005. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 19:125-140.   DOI   ScienceOn
53 Hedge, D.M., B.S. Dwived, and S.N. Sudhakara. 1999. Biofertilizers for cereal production in India - A review. Indian J. Agric. Sci. 69:73-83.
54 Hernandez-Rodriguez, A., M, Heydrich-Perez, Y. Acebo-Guerrero, M.G. Velazquez-del Valle, and A.N. Hernandez-Lauzardo. 2008. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb in maize (Zea mays L.). Appl. Soil. Ecol. 36:184-186.
55 Idris, A., L. Labuschagne, and N. Korsten. 2009. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J. Agr. Sci. 147:17-30.   DOI
56 Hildebrandt, U., K. Janetta, and H. Bothe. 2002. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68:1919-1924.   DOI   ScienceOn
57 Hildebrandt, U., F. Ouziad, F.J. Marner, and H. Bothe. 2006. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol. Lett. 254:258-267.   DOI   ScienceOn
58 Hodge, A. 2000. Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol. Ecol. 32:91-96.   DOI   ScienceOn
59 Jeffries, P., S. Gianinazzi, S. Peretto, K. Turnau, and J.M. Barea. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37:1-16.
60 Demir, S. and A. Akkopru. 2005. Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal plant pathogens. In S.B. Chincholkar and K.G. Mukerji (ed.) Biological control of plant diseases: Current concepts. Haworth Press, NY.
61 Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22:107-149.   DOI   ScienceOn
62 Dwivedi, D., B.N. Johri, K. Ineichen, V. Wray, and A. Wiemken. 2009. Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza 19:559-570.   DOI   ScienceOn
63 Elshanshoury, A.R. 1995. Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis in relation to their effect on wheat development. J. Agron. Crop Sci. 175: 119-127.   DOI   ScienceOn
64 Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 104: 1263-1280.   DOI   ScienceOn
65 Gamalero, E., G. Lingua, G. Berta, and B.R. Glick. 2009. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol. 55:501-514.   DOI   ScienceOn
66 Figueiredo, M.V.B., H.A. Burity, C.R. Martınez, and C.P. Chanway. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40:182-188.   DOI   ScienceOn
67 Frank, A.B. 1885. On the nutrient providing root-symbiosis between underground fungi and certain trees. Berichte der Deutschen botanischen Gesellschaft 5:395-409.
68 Franzini, V., R. Azconn, F.L. Mendes, and R. Aroca. 2010. Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J. Plant Physiol. 167:614-619.   DOI   ScienceOn
69 Gamalero, E., M.G. Martinotti, A. Trotta, P. Lemanceau, and G. Berta. 2004. Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol. 155:293-300.
70 Gamalero, E., G. Berta, N. Massa, B.R. Glick, and G. Lingua. 2008. Synergistic interactions between the ACC deaminaseproducing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol. Ecol. 64:459-467.   DOI   ScienceOn
71 Bianciotto, V., S. Andreotti, R. Balestrini, P. Bonfante, and S. Perotto. 2001. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. Histochem. 45:39-49.
72 Berta, G., S. Sampo, E. Gamalero, N. Massa, and P. Lamanceau. 2003. Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI overcome growth depression and root morphologenetic modifications induced by Rhizoctonia solani in tomato plant. 6th International PGPR Workshop, Calcutta, India.
73 Bianciotto, V., D. Minerdi, S. Perotto, and P. Bonfante. 1996a. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123-131.   DOI
74 Bianciotto, V., C. Bandi, D. Minerdi, M. Sironi, H.V. Tichy, and P. Bonfante. 1996b. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl. Environ. Microbiol. 62:3005-3010.
75 Bisht, R., S. Chaturvedi, R.Srivastava, A.K. Sharma, and B.N. Johri. 2009. Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Tropical Ecol. 50: 231-242.
76 Bonfante, P., R. Balestrini, and K. Mendgen. 1994. Storage and secretion processes in the spore of Gigaspora margarita Becker and Hall as revealed by high-pressure freezing and freeze substitution. New Phytol. 128:93-101.   DOI   ScienceOn
77 Budi, S.W., D. van Tuinen, G. Martinotti, and S. Gianinazzi. 1999. Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil borne fungal pathogens. Appl. Environ. Microbiol. 65:5148-5150.
78 Carpenter, L., T.E. Loynachan, and P.D. Stahl. 1995. Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol. Biochem. 27:1445-1451.   DOI   ScienceOn
79 Constantino, M., R. Gomez-Alvarez, J.D. Alvarez-Sol, V. Geissen, E. Huerta, and E. Barba. 2008. Effect of inoculation with rhizobacteria and arbuscular mycorrhizal fungi on growth and yield of Capsicum chinense Jacquin. J. Agric. Rural Dev. Trop. Subtrop. 109:169-180.
80 Cattelan, A.J., P.G. Hartel, and J.J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670-1680.   DOI
81 Araujo, F.F. 2008. Inoculacao de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodao. Cienc Agrotec. 32:456-462.   DOI
82 Arthurson, V., K. Hjort, D. Muleta, L. Jaderlund, and U. Granhall. 2011. Effects on Glomus mosseae root colonization by Paenibacillus polymyxa and Paenibacillus brasilensis strains as related to soil P-availability in winter wheat. Appl. Environ. Soil Sci. 2011:1-9.
83 Artursson, V., R.D. Finlay, and J.K. Jansson. 2006. Interactions between Arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8:1-10.   DOI   ScienceOn
84 Azaizeh, H.A., H. Marschner, V. Romheld, and L. Wittenmayer. 1995. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321-327.   DOI   ScienceOn
85 Bai, Y., X. Zhou, and D.L. Smith, 2003. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci. 43:1774-1781.   DOI
86 Barea, J.M., R. Azcon, and C. Azcon-Aguilar. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343-351.   DOI   ScienceOn
87 Barrios, E. 2007. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64:269-285.   DOI   ScienceOn
88 Bashan, Y., G. Holguin, and L.E. de-Bashan. 2004. Azospirillum plant relationships: physiological, molecular, agricultural and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577.   DOI   ScienceOn
89 Behl, R.K., H. Sharma, V. Kumar, and N. Narula. 2003. Interaction among mycorrhiza, Azotobacter chroococcum and root characteristics of wheat varieties. J. Agron. Crop Sci. 189:151-155.   DOI   ScienceOn
90 Bedini, S., E. Pellegrino, L. Avio, S. Pellegrini, P. Bazzoffi, E. Argese, and M. Giovannetti. 2009. Changes in soil aggregation and glomalin related soil protein content as affected by the Arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 41:1491-1496.   DOI   ScienceOn
91 Behn, O. 2008. Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. J. Plant Dis. Protect. 115:4-8.
92 Yao, T., S. Yasmin, and F.Y. Hafeez. 2008. Potential role of rhizobacteria isolated from Northwestern China for enhancing wheat and oat yield. J. Agric. Sci. 146:49-56.
93 Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the Central Great Plains. Biol. Fert. Soils 31:249-253.   DOI   ScienceOn
94 Wu, S.C., Z.H. Caob, Z.G. Lib, K.C. Cheunga, and M.H. Wonga. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155-166.   DOI
95 Xavier, L.J.C. and J.J. Germida. 2003. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 35:471-478.   DOI   ScienceOn
96 Utkhede, R. 2006. Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicislycopersici. Biocontrol. 51:393-400.   DOI   ScienceOn
97 Yim, W.J., S. Poonguzhali, M. Madhiyan, P. Palaniappan, M.A. Siddikee, and T.M. Sa. 2009. Characterization of plant growth promoting diazotrophic bacteria isolated from field grown chinese cabbage under different fertilization conditions. J. Microbiol. 47:147-155.   DOI
98 Yusran, R.V. and M. Torsten. 2009. Effects of Pseudomonas sp. "Proradix" and Bacillus amyloliquefaciens FZB42 on the establishment of AMF infection, nutrient acquisition and growth of tomato affected by Fusarium oxysporum Schlecht f. sp. radicis-lycopersici jarvis and shoemaker. Proceedings of the International Plant Nutrition Colloquium XVI. Department of Plant Sciences, UC Davis, Davis, California.
99 Toro, M., R. Azcon, and J.M. Barea. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ($^{32}P$) and nutrient cycling. Appl. Environ. Microbiol. 63:4408-4412.
100 Toro, M., R. Azcon, and J.M. Barea. 1998. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol. 138:265-273.   DOI   ScienceOn
101 Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586.   DOI   ScienceOn
102 Vivas, A., R. Azcon, B. Biro, J.M. Barea, and J.M. Ruiz- Lozano. 2003. Influence of bacterial strains isolated from lead-polluted soil and their interactions with Arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can. J. Microbiol. 49:577-588.   DOI   ScienceOn
103 Vivas, A., B. Biro, T. Nemeth, J.M. Barea, and R. Azcona. 2006a. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol. Biochem. 38:2694-2704.   DOI   ScienceOn
104 Vivas, A., B. Biro, J.M. Ruız-Lozano, J.M. Barea, and R. Azcon. 2006b. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523-1533.   DOI   ScienceOn
105 Vosatka, M. and M. Gryndler. 1999. Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl. Soil Ecol. 11:245-251.   DOI   ScienceOn
106 Santos, J.C., R.D. Finlay, and A. Tehler. 2006. Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytol. 172:159-168.   DOI   ScienceOn
107 Walley, F.L. and J.J. Germida. 1996. Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43-49.
108 Wang, X., Q. Pan, F. Chen, X. Yan, and H. Liao. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173-181.   DOI   ScienceOn
109 Sanchez, L., S. Weidmann, L. Brechenmacher, M. Batoux, D. van Tuinen, P. Lemanceau, S. Gianniazzi, and V. Gianinazzi- Pearson. 2004. Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol. 161:855-863.   DOI   ScienceOn
110 Sarig, S., A. Blumand, and Y. Okon. 1988. Improvement of the water status and yield of field-grown grain Sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agri. Sci. 110:271-277.   DOI
111 Sarig, S., Y. Okon, and A. Blum. 1992. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J. Plant Nutr. 15:805-819.   DOI
112 Sayeed, A.M.S. and Z.A. Siddiqui. 2008. Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot. 27:410-417.   DOI   ScienceOn
113 Silva, V.N., L.E.S.F. Silva, and M.V.B. Figueiredo. 2006. Atuac aoderizobios com rizobacte 'rias promotoras de crescimento em plantas na cultura do caupi (Vigna unguiculata L. Walp). Acta. Sci Agron. 28:407-412.
114 Smith, S.E. and D.J. Read. 1997. Mycorrhizal symbiosis. Academic Press, San Diego, CA.
115 Souchie, E.L., R. Azcon, J.M. Barea, O.J. Saggin-Junior, and E.M. Ribeiro da Silva. 2003. Indolacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Sci. Biol. Sci. 29:315-320.
116 Tilman, D., J. Fargione, B. Wolff, C. D'Antonio, A. Dobson, R. Howarth, D. Schindler, W.H. Schlesinger, D. Simberloff, and D. Swackhamer. 2001. Forecasting agriculturally driven global environmental change. Science 292:281-284.   DOI
117 Tian, C., X. He, Y. Zhong, and J. Chen. 2003. Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forest. 25:125-131.   DOI   ScienceOn
118 Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418:671-677.   DOI   ScienceOn