• 제목/요약/키워드: Switching device

검색결과 1,023건 처리시간 0.032초

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

진공청소기용 단상 스위치드 리럭턴스 모터 (Single Phase Switched Reluctance Motor for Vacuum Cleaner)

  • 임준영;정윤철;김상영;최용원;김정철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.247-251
    • /
    • 2001
  • Universal motors are mainly used for vacuum cleaner application. There are a lot of researches on SRM that applys home appliance throughout the world. The manufacturing cost of SRM drive makes it hard to expand its application to home appliance. This paper presents Single Phase SRM for the vacuum cleaner that has advantge in cost and performance over conventional universal motor. This paper proposes new power device driving scheme by using SRM switching characteristic. The driving scheme is very simple and inexpensive. Dwell Time Control method is used for the minimum switching loss of power device. The switching frequency of power device is less than 4.5kHz at 45,000rpm. By use of this scheme, power device based on very small switching losses can be used on SRM drive. Also, the biggest problem in single phase SRM is starting, this paper shows a new starting algorithm with two hall sensors, accelerating and running sensors, respectively. Finally, the proposed Single Phase SRM achieves higher efficiency and long life time compared to universal motor. Its life time is more than 1500 hours. Its life time is extended 4 times than that of conventional motor and its suction power is increased $20\%$ at the same volume of conventional universal motor.

  • PDF

Electrical Switching Characteristics of Ge1Se1Te2 Chalcogenide Thin Film for Phase Change Memory

  • Lee, Jae-Min;Yeo, Cheol-Ho;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.7-11
    • /
    • 2006
  • The changes of the electrical conductivity in chalcogenide amorphous semiconductors, $Ge_{1}Se_{1}Te_{2}$, have been studied. A phase change random access memory (PRAM) device without an access transistor is successfully fabricated with the $Ge_{1}Se_{1}Te_{2}$-phase-change resistor, which has much higher electrical resistivity than $Ge_{2}Sb_{2}Te_{5}$ and its electric resistivity can be varied by the factor of $10^5$ times, relating with the degree of crystallization. 100 nm thick $Ge_{1}Se_{1}Te_{2}$ thin film was formed by vacuum deposition at $1.5{\times}10^{-5}$ Torr. The static mode switching (DC test) is tested for the $100\;{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device. In the first sweep, the amorphous $Ge_{1}Se_{1}Te_{2}$ thin film showed a high resistance state at low voltage region. However, when it reached to the threshold voltage, $V_{th}$, the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The pulsed mode switching of the $20{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device showed that the reset of device was done with a 80 ns-8.6 V pulse and the set of device was done with a 200 ns-4.3 V pulse.

실리콘 기판위에서의 Cr-Doped SrZrO3 박막의 저항변화 특성 (Resistive Switching Properties of Cr-Doped SrZrO3 Thin Film on Si Substrate)

  • 양민규;고태국;박재완;이전국
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.241-245
    • /
    • 2010
  • One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped $SrZrO_3$ perovskite thin films were deposited on a $SrRuO_3$ bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the $SrZrO_3$:Cr perovskite and the $SrRuO_3$ bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than $10^2$. A pulse test showed the switching behavior of the Pt/$SrZrO_3:Cr/SrRuO^3$ device under a pulse of 10 kHz for $10^4$ cycles. The resistive switching memory devices made of the Cr-doped $SrZrO_3$ thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.

Soft Switching방식 고역률 강압형 컨버터 (Soft Switching High Power Factor Buck Converter)

  • 구헌회;조기연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.243-246
    • /
    • 1997
  • In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.

  • PDF

비정질 $As_{10}Ge_{15}Te_{75}$박막의 D.C. 스위칭 임계전압 특성 (The characteristics of D.C. switching threshold voltage for amorphous $As_{10}Ge_{15}Te_{75}$ thin film)

  • 이병석;이현용;이영종;정홍배
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권8호
    • /
    • pp.813-818
    • /
    • 1996
  • Amorphous As$_{10}$Ge$_{15}$ Te$_{75}$ device shows the memory switching characteristics under d.c. bias. In bulk material, a-As$_{10}$Ge$_{15}$ Te$_{75}$ switching threshold voltage (V$_{th}$) is very high (above 100 volts), but in the case of thin film, V$_{th}$ decreases to a few or ten a few volts. The characteristics of V$_{th}$ depends on the physical dimensions such as the thickness of thin film and the separation between d.c. electrodes, and the annealing conditions. The switching threshold voltage decreases exponentially with increasing annealing temperature and annealing time, but increases linearly with the thickness of thin film and exponentially with increasing the separation between d.c. electrodes. The desirable low switching threshold voltage, therefore, can be obtained by the stabilization through annealing and changing physical dimensions.imensions.sions.

  • PDF

무손실 스너버 회로를 이용한 소프트 스위칭 강압형 고역률 컨버터 (Soft switching high power factor buck converter using loss less snubber circuit)

  • 구헌회;변영복;김성철;서기영;이현우
    • 전자공학회논문지S
    • /
    • 제34S권6호
    • /
    • pp.77-84
    • /
    • 1997
  • buck type converter doesn't appear when an input voltag eis lower than an output voltage. This is the main reason the buck converter has not been used for high power factor converters. In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn on of the switching device is a zero current switching (ZCS) and high powr factor input is obtianed. In addition, zero voltage switching (ZVS) at trun off is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontinous conduction mode operation. High power factro, efficiency, soft switching operation of proposed converter is veified by simulation using Pspice and experimental results.

  • PDF