## 구두발표 III-1

## Spin-Flop Switching for High Density Magnetic Random Access Memory

K. S. Kim<sup>1</sup>, K. H. Shin<sup>1</sup>, and S. H. Lim<sup>2\*</sup>

<sup>1</sup>Nano Device Research Center, Korea Institute of Science and Technology, P. O. Box, 131, Cheongryang, Seoul 130-650, Korea

<sup>2</sup>Division of Materials Science and Engineering, Korea University, Seoul 136-713, Korea

In this work, micromagnetic computer simulation has been carried out to investigate the suitability of the new method of magnetization switching for high density MRAM, which was recently proposed by Lenoid Savtchenko et al. [1]. Various parameters of t, J and  $H_u$  were considered in the simulation, particularly to examine their effects on the magnitude of  $H_s$ . In both the toggle and direct write modes,  $H_s$  decreases with decreasing J. However, the opposite trend is observed in the t dependence; as t increases,  $H_s$ increases in the toggle mode while it decreases in the direct write mode. This opposite behavior may be due to different dominant factor for  $H_s$  depending on the write mode:  $H_{sf}$  in the toggle mode and  $H_d$  in the direct write mode. An optimum value of  $H_u$  is determined to be approximately 15 Oe, by considering the bi-stability of bits in the present circular geometry and the role of  $H_u$  in increasing  $H_s$ . The results for the window for bit-writing calculated over a wide range of  $H_{word}$  and  $H_{bit}$  show that a very wide switching window is observed in the toggle mode, but the magnetic fields required for magnetization switching are very high being roughly in the range 150 Oe  $< H_{word}$ ,  $H_{bit} <$ 400 Oe. This observation is in agreement with common expectation. In the direct write mode, the window for bit-writing is narrower and also very asymmetric with respect to  $H_{word}$  and  $H_{bit}$ , the switching region extending deep into the  $H_{bit}$  direction but not into the  $H_{word}$  direction. This simulation result is in contrast with the original estimation of typical "L" shaped, wide and symmetrical write window [1]. Both reasonably low values of  $H_{word}$ and  $H_{bit}$  and a wide write window are obtained at the asymmetric condition  $H_{word} > H_{bit}$ , specifically, 100 Oe =  $H_{word}$  = 150 Oe and 70 Oe =  $H_{bit}$  = 100 Oe. The present results indicate that the new method in the direct write mode can be suitable for high density MRAM.

Financial support from the Tera-level Nano devices project (a 21<sup>st</sup> Century Frontier Research Project) is acknowledged.

[1] Leonid Savtchenko, Bradley N. Engel, Nicholas D. Rizzo, Mark F. Deherrera, and Jason Allen Janesky, U.S. Patent No. 6,545,906 (Apr 8, 2003).

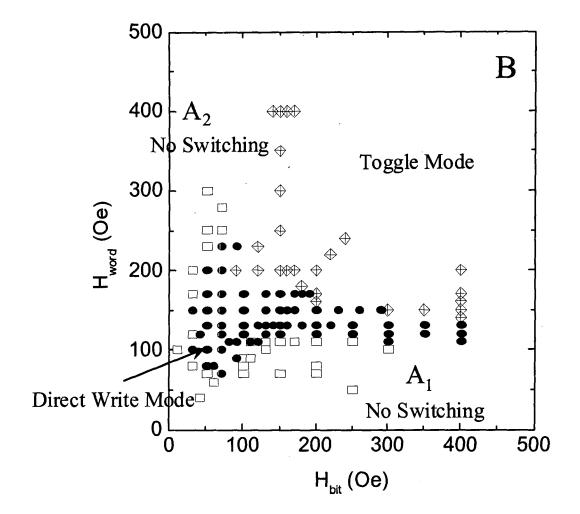



Fig.1. The switching window in the toggle (diamonds combined with pluses) and direct write modes (filled circles). The conditions used in the simulations are:  $J = -0.05 \text{ erg/cm}^2$ , t = 2 Å and  $H_u = 150\text{e}$ . The regions of  $A_1$  and  $A_2$  indicate no switching (denoted by unfilled rectangles). The region B indicates an undetermined state.