Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.5

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications  

Im, Minho (Department of Physics, University of Seoul)
Kim, Jisoo (Department of Physics, University of Seoul)
Park, Kyoungwan (Department of Physics, University of Seoul)
Sok, Junghyun (Department of Physics, University of Seoul)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 348-352 More about this Journal
Abstract
Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.
Keywords
Resistive switching; Zinc silicate; Conduction mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys., 33, 1129 (1970). [DOI: https://doi.org/10.1088/0034-4885/33/3/306]   DOI
2 J. G. Simmons, J. Phys. D: Appl. Phys., 4, 613 (1971). [DOI: https://doi.org/10.1088/0022-3727/4/5/202]   DOI
3 F. M. Simanjuntak, D. Panda, K. H. Wei, and T. Y. Tseng, Nanoscale Res. Lett., 11, 368 (2016). [DOI: https://doi.org/10.1186/s11671-016-1570-y]   DOI
4 J. Kim, A. I. Inamdar, Y. Jo, H. Woo, S. Cho, S. M. Pawar, H. Kim, and H. Im, ACS Appl. Mater. Interfaces, 8, 9499 (2016). [DOI: https://doi.org/10.1021/acsami.5b11781]   DOI
5 A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett., 77, 139 (2000). [DOI: https://doi.org/10.1063/1.126902]   DOI
6 S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett., 76, 2749 (2000). [DOI: https://doi.org/10.1063/1.126464]   DOI
7 B. J. Choi, A.B.K. Chen, X. Yang, and I. W. Chen, Adv. Mater., 23, 3847 (2011). [DOI: https://doi.org/10.1002/adma.201102132]   DOI
8 H. Wang, C. Zou, L. Zhou, C. Tian, and D. Fu, Microelectron. Eng., 91, 144 (2012). [DOI: https://doi.org/10.1016/j.mee.2011.05.037]   DOI
9 A. Sawa, Mater. Today, 11, 28 (2008). [DOI: https://doi.org/10.1016/S1369-7021(08)70119-6]   DOI
10 T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, Mater. Today, 19, 254 (2016). [DOI: https://doi.org/10.1016/j.mattod.2015.11.009]   DOI
11 H. Jiang, X. Y. Li, R. Chen, X. L. Shao, J. H. Yoon, X. Hu, C. S. Hwang, and J. Zhao, Sci. Rep., 6, 22216 (2016). [DOI: https://doi.org/10.1038/srep22216]   DOI
12 B. W. Fowler, Y. F. Chang, F. Zhou, Y. Wang, P. Y. Chen,. F. Xue, Y. T. Chen, B. Bringhurst, S. Pozder, and J. C. Lee, RSC Adv., 5, 21215 (2015). [DOI: https://doi.org/10.1039/C4RA16078A]   DOI
13 K. H. Jung, S. G. Song, K. W. Park, J. H. Sok, K. M. Kim, and Y. S. Park, J. Korean Phys. Soc., 70, 489 (2017). [DOI: https://doi.org/10.3938/jkps.70.489]   DOI
14 J. F. Gibbons and W. E. Beadle, Solid-State Electron., 7, 785 (1964). [DOI: https://doi.org/10.1016/0038-1101(64)90131-5]   DOI
15 T. W. Hickmott, J. Appl. Phys., 33, 2669 (1962). [DOI: https://doi.org/10.1063/1.1702530]   DOI