• Title/Summary/Keyword: Switching Modulation

Search Result 724, Processing Time 0.024 seconds

Analysis and Implementation of a New Three-Level Converter

  • Lin, Bor-Ren;Nian, Yu-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.478-487
    • /
    • 2014
  • This study presents a new interleaved three-level zero-voltage switching (ZVS) converter for high-voltage and high-current applications. Two circuit cells are operated with interleaved pulse-width modulation in the proposed converter to reduce the current ripple at the input and output sides, as well as to decrease the current rating of output inductors for high-load-current applications. Each circuit cell includes one half-bridge converter and one three-level converter at the primary side. At the secondary side, the transformer windings of two converters are connected in series to reduce the size of the output inductor or switching current in the output capacitor. Based on the three-level circuit topology, the voltage stress of power switches is clamped at $V_{in}/2$. Thus, MOSFETs with 500 V voltage rating can be used at 800 V input voltage converters. The output capacitance of the power switch and the leakage inductance (or external inductance) are resonant at the transition interval. Therefore, power switches can be turned on under ZVS. Finally, experiments verify the effectiveness of the proposed converter.

A Mock Running And Transient State Test of Propulsion VVVF Inverter for Electric Locomotive using A Inertia Load (관성부하를 이용한 전동차 추진용 VVVF 인버터의 모의주행 및 과도상태시험)

  • 정만규;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.491-499
    • /
    • 1999
  • This paper is on the high perfonnance propulsion IGBT VVVF inverter adopted new technique for railways. To prove the high performance and stabilit~r of traction, running tests are carried out under the simulated condition alike real field. The tests are perfonned on not only a steady states but also a transient states such a as input voltage variation using inertia load equivalent to 160tons train. The vector control technique is a adopted to improve traction for 4 motors. The low switching synchronous PW1\l method based on a space v voltage vector modulation is pro\XlSed as the optimal method for propulsion system railway. The output voltage l is controlled continuously to six step by prolxlsed ovennodu]ation technique without sudden torque variation.

  • PDF

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

A PWM Control Strategy for Low-speed Operation of Three-level NPC Inverter based on Bootstrap Gate Drive Circuit (부트스트랩 회로를 적용한 3-레벨 NPC 인버터의 저속 운전을 위한 PWM 스위칭 전략)

  • Jung, Jun-Hyung;Ku, Hyun-Keun;Im, Won-Sang;Kim, Wook;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • This paper proposes the pulse width modulation (PWM) control strategy for low-speed operation in the three-level neutral-point-clamped (NPC) inverters based on the bootstrap gate drive circuit. As a purpose of the cost reduction, several papers have paid attention to the bootstrap circuit applied to the three-level NPC inverter. However, the bootstrap gate driver IC cannot generate the gate signal to the IGBT for low-speed operation, because the bootstrap capacitor voltage decreases under the threshold level. For low-speed operation, the dipolar and partial-dipolar modulations can be the effective solution. However, these modulations have drawbacks in terms of the switching loss and THD. Therefore, this paper proposes the PWM control strategy to operate the inverter at low-speed and to minimize the switching loss and harmonics. The experimental results are presented to verify the validity on the proposed method.

Suppression of Zero Sequence Current Caused by Dead-time for Dual Inverter With Single Source (단전원 듀얼 인버터의 데드타임으로 인한 영상전류 억제 방법)

  • Yoon, Bum-Ryeol;Kim, Tae-Hyeong;Lee, June-Hee;Lee, June-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.126-133
    • /
    • 2022
  • This study proposes a suppression of zero sequence current (ZSC), which is caused by zero sequence voltage (ZSV) for a dual two-level inverter with single DC bus. Large output voltages enable the dual inverter with single DC bus to improve a system efficiency compared with single inverter. However, the structure of dual inverter with single DC bus inevitably generates ZSC, which reduces the system efficiency and causes a current ripple. ZSV is also produced by dead time, and its magnitude is determined by the DC bus and current direction. This study presents a novel space vector modulation method that allows the instantaneous suppression of ZSC. Based on a condition where a switching period is twice a sampling (control) period, the proposed control method is implemented by injecting the offset voltage at the primary inverter. This offset voltage is injected in half of the switching period to suppress the ZSC. Simulation and experiments are used to compare the proposed and conventional methods to determine the ZSC suppression performance.

A Spread Spectrum System Using Adaptive Modulation and Switched Diversity (적응변조와 안테나 교환 다이버시티 기술을 사용한 대역 확산 시스템)

  • Park, Jin-Kyu;Lim, Chang-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.440-447
    • /
    • 2007
  • The switched diversity, although its performance is a little inferior to the selection diversity, is widely used due to its advantage that only one RF circuit is required for its operation without respect to the number of antennas in use. In this paper, we propose an application of the antenna switched diversity to a spread spectrum system with adaptive modulation and derived the optimal antenna switching threshold to maximize the average transmission bit rate. We also compared the performances of the proposed system with those of the two cases using a single antenna and the selection diversity with two antennas in terms of the average number of bits per symbol(BPS), the probability of no transmission, and the average BER. The performance analysis shows that, if the number of paths in a multipath channel environment increases, the performance of the proposed scheme becomes closer to that of the selection diversity based system in terms of the average BPS. Furthermore, the proposed scheme produces as almost high the probability of no transmission as the selection diversity based system for the case of low average SNR, although the former yields a little higher probability of no transmission than the latter fer the case of high average SNR.

Performance Analysis of Spatial Modulation Schemes in Correlated Urban Wireless Communication Channels (상관성을 가진 도심무선채널환경에서 공간 변조 기법들의 성능분석)

  • Jo, Bonggyun;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.826-835
    • /
    • 2014
  • Recently, spatial modulation (SM) schemes are considered to improve the reception performance in spatially correlated channel environments. SM schemes utilize a switching method between multiple transmitters to reduce the correlation among multiple transmitters to reduce the correlation of each received signals and can support transmission additional bits using antenna combinations without extra bandwidth. Therefore, SM schemes can overcome correlation interference of conventional MIMO in urban wireless channels. However, the performance comparisons between SM schemes are not yet performed in correlated urban wireless channels. In this paper, some representative SM schemes are compared and a suitable SM-MIMO system in correlated urban wireless channels is proposed.

A Frequency Synthesizer for Ka band compact Radar using DDS (DDS를 이용한 Ka 대역 소형 레이다용 주파수합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak;Kwon, Jun-Beom;Choi, Young-Rak;Kim, Jong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we designed a frequency synthesizer using DDS (Direct Digital Synthesizer) for Ka-band compact Radar. DDS is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and Ka band frequency up-converter are integrated in one module. Proposed frequency synthesizer provides LFM(Linear Frequency Modulation) waveform and Phase modulated FMCW (Frequency Modulation Continuous Wave) waveform. It is observed that fabricated synthesizer performs $0.191{\mu}sec$ frequency switching time and -89.16 dBc/Hz phase noise at offset 1 kHz.

A New Pulse Frequency Modulation(PFM) Series Boost Capacitor(SBC) Full Bridge DC/DC Converter (새로운 주파수 가변형(PFM) 직렬 부스트 캐패시터(SBC) 풀 브리지 DC/DC 컨버터)

  • Shin, Yong-Saeng;Jang, Young-Su;Roh, Chung-Wook;Hong, Sung-Soo;Lee, Hyo-Bum;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.120-127
    • /
    • 2009
  • This paper proposes a new Pulse Frequency Modulation(PFM)-Series Boost Capacitor(SBC) full bridge DC/DC Converter which features a high efficiency and high power density. The proposed converter controls the output voltage by varying the voltage across the series boost capacitor according to switching frequency and has no freewheeling period due to 50% fixed duty operation. As a result, its conduction loss is lower than that of the conventional phase shift full bridge converter. Moreover, ZVS of all power switches can be ensured along wide load ranges and output current ripple is very small. Therefore, it has very desirable merits such as a small output inductor, high efficiency, and improved heat generation. This paper performs a rationale and PSIM simulation of the proposed converter. Finally, experimental results from a 1.2kW(12V, 100A) prototype are presented to confirm the operation, validity and features of the proposed converter.