• Title/Summary/Keyword: Switch design

Search Result 976, Processing Time 0.03 seconds

Control System Design of Electric Operated Adjustable Bed for Body Posture Stability (체간 안정성을 위한 전동침대의 제어시스템 설계)

  • Bae, J.H.;Moon, I.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.55-62
    • /
    • 2012
  • In this paper we propose a control system to preserve the interior angle between back section and upper leg section to be larger than 90 degrees using a single limit switch. To design the control system we analyze the kinematics of actuation mechanisms for the back section and the upper leg section, and find out an optimal solution for the controller design. Using a prototype control system we perform experiments to test the controller performance, and show that the interior angle between the back section and the upper leg section is always preserved larger than 90 degree. From the experimental results, we show the proposed control system is feasible to keep the body posture stability.

  • PDF

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law (제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Shin, Ji-Hwan;Park, Sang-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • Seo, So-Hyeon;Lee, Jeong-Hyeon;Bang, Gyeong-Suk;Lee, Hyo-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

RCD Snubber Design and Analysis using Resonance Coordinate

  • Li, Shan-Mei;Koo, Gwan-Bon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.347-348
    • /
    • 2012
  • An approach to design and analyze an RCD snubber for flyback converters will be introduced. The resonance coordinate provides an easy way to understand the transient period of the switch turn-off and helps to design and analyze the RCD snubber easily. An example of analyzing RCD snubber losses for 40W prototype will be given and experimented to show the effectiveness of the suggested method.

  • PDF

An Implementation of a Current Controlled Bi-directional Inverter with ZVT Switching (ZVT 스위칭 되는 전류제어형 양방향 인버터의 구현)

  • 李 星 龍;高 晟 勳;金 成 佑
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.129-136
    • /
    • 2002
  • A single-phase inverter using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is presented. It Is shown that the ZACE(Zero Average Current Error) algorithm based Polarized ramptime current control can provide a suitable interface between DC link of diode bridge-type resonant circuit and the inverter. The current control algorithm is analyzed about how to design the circuit with auxiliary switch which can ZVT operation for the main power switch. The simulation and experimental results would be shown to verify the proposed current algorithm, because the main Power switch is turn on with ZVT and the hi-directional inverter is operated.

Performance study of the priority scheme in an ATM switch with input and output queues (입출력 큐를 갖는 ATM 스위치에서의 우선순위에 관한 성능 분석)

  • 이장원;최진식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.1-9
    • /
    • 1998
  • ATM was adopted as the switching and multiplexing technique for BISDN which aims at transmitting traffics with various characteristics in a unified network. To construct these ATM networks, the most important aspect is the design of the switching system with high performance and different service capabilities. In this paepr, we analyze the performance of an input and output queueing switch with preemptive priority which is considered to be most suitable for ATM networks. For the analysis of an input queue, we model each input queue as two separate virtual input queues for each priority class and we approximage them asindependent Geom/Geom/1 queues. And we model a virtual HOL queue which consists of HOL cells of all virtual input queues which have the same output address to obtain the mean service time at each virtual input queue. For the analysis of an output quque, we obtain approximately the arrival process into the output queue from the state of the virtual HOL queue. We use a Markov chain method to analyze these two models and obtain the maximum throughput of the switch and the mean queueing delay of cells. and analysis results are compared with simulation to verify that out model yields accurate results.

  • PDF

Design of High Performance Buffer Manager for an Input-Queued Switch (고성능 입력큐 스위치를 위한 버퍼관리기의 설계)

  • GaB Joong Jeong;Lee, Bhum-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.394-397
    • /
    • 2003
  • In this paper, we describe the implementation of high performance buffer manager that is used in an advanced input-queued switch fabric. The designed buffer manager provides wire-speed cell/packet routing with low cost and tolerates the transmission pipeline latency of request and grant data. The buffer manager is implemented in a FPGA chip and supports the speed of OC-48c, 2.5Gbps per port.

  • PDF

Ergonomic Design of Warning Control in Passenger Car Based on Response Time and Preference (반응시간과 선호도를 고려한 승용차 Warning Control 의 인간공학적 설계)

  • Kee, Do-Hyung;Kim, Hyung-Su
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.143-153
    • /
    • 1998
  • Warning control is one of the most important components in driver's cabin for achieving safe driving. The purpose of this study is to suggest ergonomically optimal location and type of passenger car's warning control. An experiment was conducted using driving simulator, in which nine locations and two types of warning controls -push button, rocker switch- were employed as experimental variables, and response time for warning signal and preference for locations and types of warning controls were measured as dependent variables. The results showed that response time for warning signal was the shortest when warning control was located at the middle left corner of the center fascia, and was the second at the middle center of the center fascia. Preference for warning signal was the highest at the middle left comer of the center fascia, and was the second between the steering wheel column and the center fascia. Although push button was not preferred to rocker switch, response time was shorter for push button than for rocker switch. It was suggested from these results that warning control with the type of push button should he located at among the middle left corner of the center fascia, the middle center of the center fascia, and between the steering wheel column and the center fascia.

  • PDF

Design, Fabrication and Measurement of a Compact, Frequency Reconfigurable, Modified T-shape Planar Antenna for Portable Applications

  • Iqbal, Amjad;Ullah, Sadiq;Naeem, Umair;Basir, Abdul;Ali, Usman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1611-1618
    • /
    • 2017
  • This paper presents a compact reconfigurable printed monopole antenna, operating in three different frequency bands (2.45 GHz, 3 GHz and 5.2 GHz), depending upon the state of the lumped element switch. The proposed multiband reconfigurable antenna is designed and fabricated on a 1.6 mm thicker FR-4 substrate having a relative permittivity of 4.4. When the switch is turned ON, the antenna operates in a dual band frequency mode, i.e. WiFi at 2.45 GHz (2.06-3.14 GHz) and WLAN at 5.4 GHz (5.11-5.66 GHz). When the switch is turned OFF, it operates only at 3 GHz (2.44-3.66 GHz). The antenna radiates omni-directionally in these bands with an adequate, bandwidth (>10 %), efficiency (>90 %), gain (>1.2 dB), directivity (>1.7 dBi) and VSWR (<2). The fabricated antenna is tested in the laboratory to validate the simulated results. The antenna, due to its reasonably compact size ($39{\times}37mm^2$), can be used in portable devices such as laptops and iPads.