• Title/Summary/Keyword: Suspension Polymerization

Search Result 92, Processing Time 0.028 seconds

Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide (산화 그래핀에 의한 EDOT의 산화중합에 관한 연구)

  • Kim, Min Chae;Park, Min Ui;Park, No Il;Lee, Seul Bi;Lee, Seong Min;Yang, So Yeon;Choi, Jong Hyuk;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to $15S{\cdot}m^{-1}$. Annealing of GO-P films at $200^{\circ}C$ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to $212S{\cdot}m^{-1}$.

Synthesis and Characterization of Ion Exchange Particles for Application of Anion Exchange Membrane (음이온교환막 적용을 위한 이온교환입자의 합성 및 특성평가)

  • Dong Jun Lee;Kwang Seop Im;Ka Yeon Ryu;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.137-147
    • /
    • 2023
  • In this study, Br-PPO was developed by applying additive organic particles through a suspension polymerization synthesis method. The anion exchange membrane fuel cell system performance was evaluated using it to an anion exchange membrane. To improve the performance, organic ion exchange particles were prepared and added to the anion exchange membrane. Chemical structure analysis and synthesis were determined through FT-IR and NMR, and tensile strength and thermal stability were measured through TGA and UTM to determine whether it could be driven. Before the anion exchange membrane fuel cell test, the performance was evaluated by measuring the ion conductivity and ion exchange capacity. Finally, the Br-PPO-TMA-SDV (0.7%) anion exchange membrane with excellent ion conductivity and ion exchange capacity was introduced into the fuel cell system. Its performance was compared with FAA-3-50, a commercial membrane, to determine whether it could be introduced into a fuel cell system.

Growth and Characteristics of Monodispersed Spherical Silica Particles by Sol-Gel Method (졸-겔 법에 의한 단분산 구형 실리카 입자의 성장과 특성에 관한 연구)

  • 윤호성;박형상
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.13-19
    • /
    • 1997
  • From the formation of the monodispersed silica particle which is a valuable for the industry by Sol-Gel process, the effects of the parameters participated in the process, the growth mechanism and the characteristics of silica particles for each rection conditions are investigated. To investigate about the formation of final silica particles, the suspension which performs the polymerization is reacted with molybdic acid, and the evolutions of TEOS and silica particle size are investigated in the reaction time ? 새 the characteristics of molybdic acid with the suspension. From the results, a constant number of silica particle is formed at early reaction stage. Silica particles grow through the aggregation of smaller particles and nucleation is rate-limiting step for the growth of particles. In the conditions of this study, spherical silica particles are formed, [NH$_3$] and [$H_2O$] concentration increase the particle size but particle size decrease with [$H_2O$] concentration which is a certain above region. Average particle sizes are 187.4~483.3 nm and standard deviations in the average particle size are 1.7~2.9% with each experimental condition. From the BET results, specific surface area is 5.5~23.4 $m^2$/g and these values decrease with increase size. The average pore size is 50~70$\AA$.

  • PDF

Manufacture of Yellow Ocher Polystyrene-Based Hybrid Nanoparticles for High-Performance PET Applications (고성능 페트 생산용 폴리스티렌 기반 하이브리드형 나노구조체 생산)

  • Choi, Jae Bong;Kim, Sanghee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.701-707
    • /
    • 2014
  • The ecofriendly yellow ocher is used in the manufacturing of cosmetics, construction, and food packaging. The polyethylene terephthalate (PET) used for manufacturing food containers has a microporous structure that causes aeration. Hydrophilic yellow ocher may be applied to hydrophobic PET by surface modification to overcome this issue. The aim of this study is to fabricate a yellow ocher polystyrene hybrid structure in the form of nanoparticles using an optimizing molar ratio of styrene, divinylbenzene, and potassium peroxodisulfate for use in emulsion polymerization. The polymerization was conducted in a yellow ocher suspension that was prepared by dispersing mechanically ground yellow ocher in DI water. The prepared hybrid structure was measured using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The measurement revealed the spherical morphology and Si component that resulted from the yellow ocher in the polystyrene particles. We expect that this hybrid structure would be used as platform material to minimize aeration in PET.

Preparation of Polystyrene Beads by Suspension Polymerization with Hydrophobic Silica as a Stabilizer in Aqueous Solution (소수성 실리카를 안정제로 이용하는 수용액 상에서의 현탁중합법에 의한 폴리스티렌 입자 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.498-504
    • /
    • 2006
  • A suspension polymerization of styrene In aqueous phase was employed to study if polystyrene particles ranging from 1 to $20{\mu}m$ can be produced. Hydrophobic silica was selected as a stabilizer and azo-bisisobutyronitrile (AIBN) as an initiator. Polymerization reaction was carried out at a selected temperature in the range of $65{\sim}95^{\circ}C$. Stabilizer concentration was varied from 0.17 to 3.33 wt% compared to the water while the concentration of the initiator was raised from 0.13 to 6.0 wt% compared to the monomer. Dispersion of hydrophobic silica into the water phase was achieved by precise control of pH. Optimum dispersion of silica was obtained at pH 10. Average particle diameter decreased with increasing amounts of stabilizer concentration initially, exhibiting the minimum average diameter at 1.67 wt% of stabilizer concentration, after which it started to Increase. It is speculated that an excessive presence of stabilizer encouraged a secondary reaction in the reaction medium, which led to particle agglomeration, and as a result an increase in average particle diameter. Molecular weight was found to be independent of stabilizer concentration between 0.13 and 1.00 wt% whereas, it increased when stabilizer concentration exceeded 1.67 wt%. Variation of molecular weight was probably caused by the reduced activity and efficiency of initiator due to the high concentration of silica, and the secondary reaction in the reaction medium, as well. An increase in the Initiator concentration and/or reaction temperature resulted in an increase in both reaction rate and particle diameter. Consequently, we have confirmed that spherical polystyrene particles with $1{\sim}20{\mu}m$ in diameter can be prepared by careful selection of the concentration of stabilizer, initiator, pH and reaction temperature.

Effects of Calcium Hydroxide/Phosphoric Acid Suspending Agents on the Characteristics of Styrene-Based Suspension Polymerized Toners (수산화칼슘/인산 현탁제가 스타이렌 기반 현탁중합토너의 특성에 미치는 영향)

  • Yu, Jae-Goang;Kim, Dae-Su
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.923-928
    • /
    • 2012
  • Optimizing a water-phase suspending system is very important to manufacture high-quality suspension polymerized toners. Therefore, in this study, the effects of the molar ratio of calcium hydroxide ($CaOH_2$)/phosphoric acid ($H_3PO_4$)(Ca/P), which were used as inorganic suspending agents, and pH of the water-phase on the characteristics of styrene-based suspension polymerized toners were mainly investigated. At first, the water-phase was fixed to neutral condition (pH=7.5) and Ca/P molar ratio was changed from 1.5:1 to 1.76:1. As a result, an ideal calcium phosphate (hydroxyapatite) was prepared at the Ca/P molar ratio of 1.73:1 and polymerized toners prepared at this condition showed good particle size distribution, circularity and charging characteristic. Based on this result, Ca/P molar ratio was fixed to 1.73:1 and pH of the water-phase was changed to weak acidic (pH=5.5) and weak basic (pH=9.5) conditions. As a result, polymerized toners prepared under the weak acidic condition showed very good particle size distribution, circularity and charging characteristic along with excellent printing quality. High-quality suspension polymerized toners could be prepared via optimizing Ca/P molar ratio and pH of the water-phase.

Synthesis and Characterization of Sodium Acrylate and 2-Acrylamido-2- Methylpropane Sulphonate (AMPS) Copolymer Gels

  • Jassal, Manjeet;Chattopadhyay, Ritwik;Ganguly, Debojyoti
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • A series of superabsorbents based on acrylic acid (AA), sodium acrylate, 2-acrylamido-2-methylpropane sulphonic acid, N,N'-methylene bis-acrylamide (MBA) were prepared by inverse suspension polymerization. These hydrogels were further crosslinked on the surface with polyethylene glycol-600 (PEG-600). The water absorbency or swelling behaviors for these xerogels in water and 0.9% saline solutions, both under free condition and under load were investigated. Absorption characteristics of these hydrogels were found to depend on nature and concentration of crosslinker in the system. It was also found that the saline absorption was significantly improved as the incorporation of AMPS in the polymer was increased. The surface crosslinking introduced in the polymers was found to improve the absorption under load characteristics without lowering the free water absorption capacities of the polymer to a considerable extent.

The Electrorheological and Dielectric Behaviors of Conducting Polymer-coated Poly(ethyl methacrylate) Suspensions

  • Kim, Young-Dae;Park, Dong-Hyup;Nam, Suk-Woo;Park, Tae-Jin
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.215-220
    • /
    • 2002
  • The electrorheological (ER) and dielectric behaviors of the polypyrrole(PPy)-coated poly(ethyl methacrylate)(PEMA) suspensions in mineral oil were investigated. PPy was coated on PEMA particles to enhance the particle polarization, which would lead to the enhanced ER response. Various PPy-coated PEMA particles were synthesized by controlling the oxidant amount during the pyrrole polymerization, and the ER responses of their suspensions were investigated. The ER response initially increases with the oxidant amount, passes through a maximum, and then decreases with the oxidant amount. The initial increase in the ER response with oxidant amounts is due to the enhanced particle polarization with the increased particle surface conductivity. The dielectric properties of the corresponding suspensions support that the ER enhancement arises from the enhanced particle polarization. The decrease in the ER response at large oxidant amounts seems to arise from the increased conduction between the PPy-coated PEMA particles.