The Electrorheological and Dielectric Behaviors of Conducting Polymer-coated Poly(ethyl methacrylate) Suspensions

  • Kim, Young-Dae (Faculty of Applied Chemistry, Chonnam National University) ;
  • Park, Dong-Hyup (Faculty of Applied Chemistry, Chonnam National University) ;
  • Nam, Suk-Woo (Environment and Process Technology Division, KIST) ;
  • Park, Tae-Jin (Environment and Process Technology Division, KIST)
  • Published : 2002.08.01

Abstract

The electrorheological (ER) and dielectric behaviors of the polypyrrole(PPy)-coated poly(ethyl methacrylate)(PEMA) suspensions in mineral oil were investigated. PPy was coated on PEMA particles to enhance the particle polarization, which would lead to the enhanced ER response. Various PPy-coated PEMA particles were synthesized by controlling the oxidant amount during the pyrrole polymerization, and the ER responses of their suspensions were investigated. The ER response initially increases with the oxidant amount, passes through a maximum, and then decreases with the oxidant amount. The initial increase in the ER response with oxidant amounts is due to the enhanced particle polarization with the increased particle surface conductivity. The dielectric properties of the corresponding suspensions support that the ER enhancement arises from the enhanced particle polarization. The decrease in the ER response at large oxidant amounts seems to arise from the increased conduction between the PPy-coated PEMA particles.

Keywords

References

  1. Appl. Phys. v.20 W. M. Winslow https://doi.org/10.1063/1.1698285
  2. Rheol. Acta. v.23 Y. F. Deinega;G. V. Vinogradov https://doi.org/10.1007/BF01438804
  3. Non-Newt. Fluid Mech. v.8 Z. P. Shulman;R. G. Gorodkin;E. V. Korobko https://doi.org/10.1016/0377-0257(81)80003-1
  4. Adv. Colloid Interface Sci. v.30 A. P. Gast;C. F. Zukoski https://doi.org/10.1016/0001-8686(89)80006-5
  5. Intell. Syst. Struct. v.4 K. D. Weiss;J. D. Carlson https://doi.org/10.1177/1045389X9300400103
  6. Stat. Phys. v.64 J. E. Stangroom https://doi.org/10.1007/BF01048814
  7. Appl. Phys. v.38 D. L. Klass;T. W. Martinek https://doi.org/10.1063/1.1709014
  8. Langmuir v.6 D. J. Klingenber;C. F. Zukoski https://doi.org/10.1021/la00091a003
  9. Chem. Soc. Faraday Trans. v.87 D. J. Klingenberg;D. Dierking;C. F. Zukoski https://doi.org/10.1039/ft9918700425
  10. Rheology v.34 E. F. Filisko;L. H. Razdilowski https://doi.org/10.1122/1.550095
  11. J Coll. Interface Sci. v.150 Y. Otsubo;M. Sakine;S. Katayama https://doi.org/10.1016/0021-9797(92)90201-V
  12. J. Coll. Interface Sci. v.168 Y. D. Kim;D. J. Klingenberg
  13. J. Coll. Interface Sci. v.236 Y. D. Kim https://doi.org/10.1006/jcis.2000.7408
  14. J. Phys. D: Appl. Phys. v.31 F. Ikazaki;A. Kawai;K. Uchida;T. Kawakami;K. Edamura;K. Sakurai;H. Anzai;Y. Asako https://doi.org/10.1088/0022-3727/31/3/014
  15. J Coll. Interface Sci. v.168 Y. Otsubo;K. Edamura https://doi.org/10.1006/jcis.1994.1413
  16. Colloid Polym. Sci. v.278 S. G. Kim;J. W. Kim;H. J. Choi;M. S. Suh;M. J. Shin;M. S. John https://doi.org/10.1007/s003960000360
  17. Macromol. Rapid Commun. v.19 M. S. Cho;H. J. Choi;K. To
  18. J. Phys. Chem. B v.101 J. W. Goodwin;G. M. Markham;B. Vincent https://doi.org/10.1021/jp962267j
  19. Mater. Sci. Engr v.95 A. F. Sprecher;J. D. Carlson;H. Conrad https://doi.org/10.1016/0025-5416(87)90510-6
  20. J. Electrostat. v.33 J. N. Foulc;P. Atten;N. Felici https://doi.org/10.1016/0304-3886(94)90065-5
  21. J. Phys. D: Appl. Phys. v.29 C. W. Wu;H. Conrad https://doi.org/10.1088/0022-3727/29/12/032
  22. J. Chem. Soc. Chem. Commun. R. B. Bjorklund;B. Liedberg
  23. Synth. Met. v.31 S. Machida;S. Miyata;A. Techagumpuch