Browse > Article
http://dx.doi.org/10.14478/ace.2015.1119

Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide  

Kim, Min Chae (Department of Polymer Engineering, College of Engineering, Suwon University)
Park, Min Ui (Department of Polymer Engineering, College of Engineering, Suwon University)
Park, No Il (Department of Polymer Engineering, College of Engineering, Suwon University)
Lee, Seul Bi (EverChemTech Co., Ltd.)
Lee, Seong Min (EverChemTech Co., Ltd.)
Yang, So Yeon (Department of Polymer Engineering, College of Engineering, Suwon University)
Choi, Jong Hyuk (Department of Polymer Engineering, College of Engineering, Suwon University)
Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
Publication Information
Applied Chemistry for Engineering / v.27, no.1, 2016 , pp. 45-49 More about this Journal
Abstract
In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to $15S{\cdot}m^{-1}$. Annealing of GO-P films at $200^{\circ}C$ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to $212S{\cdot}m^{-1}$.
Keywords
graphene oxide; oxidative polymerization; PEDOT/PSS; 3,4-ethylenedioxythiophene;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007).   DOI
2 Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 22, 3906-3924 (2010).   DOI
3 J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011).   DOI
4 V. Singh, D. H. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56, 1178-1271 (2011).   DOI
5 D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010).   DOI
6 C. L. Su and K. P. Loh, Carbocatalysts: Graphene Oxide and Its Derivatives, Acc. Chem. Res., 46, 2275-2285 (2013).   DOI
7 D. R. Dreyer, H. P. Jia, and C. W. Bielawski, Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions, Angew. Chem., 122, 6965-6968 (2010).   DOI
8 D. R. Dreyer, S. Murali, Y. W. Zhu, R. S. Ruoff, and C. W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem., 21, 3443-3447 (2011).   DOI
9 D. R. Dreyer, H. P. Jia, A. D. Todd, J. X. Geng, and C. W. Bielawski, Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides, Org. Biomol. Chem., 9, 7292-7295 (2011).   DOI
10 K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes, Langmuir, 27, 2014-2018 (2011).   DOI
11 S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nquyen, and R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem., 16, 155-158 (2006).   DOI
12 S. Wang, C. T. Nai, X. F. Jiang, Y. H. Pan, C. H Tan, M. Nesladek, Q. H. Xu, and K. P. Loh, Graphene Oxide Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties, J. Phys. Chem. Lett., 3, 2332-2336 (2012).   DOI
13 D. Sun, L. Jin, Y. Chen, J. R. Zhang, and J. J. Zhu, Microwave-Assisted In Situ Synthesis of Graphene/PEDOT Hybrid and Its Application in Supercapacitors, Chem. Plus Chem., 78, 227-234 (2013).
14 H. Zhou, W. Yao, G. Li, J. Wang, and Y. Lu, Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity, Carbon, 59, 495-502 (2013).   DOI
15 S. Kirchmeyer and K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), J. Mater. Chem., 15, 2077-2088 (2005).   DOI
16 F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. V. Luppen, E. Verdonck, and L. Leenders, PEDOT/PSS: synthesis, characterization, properties and applications, Synth. Met., 135-136, 115-117 (2003).   DOI
17 H. S. Yoo and Y. S. Park, Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine, Appl. Chem. Eng., 24, 93-98 (2013).
18 N. I. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer, Appl. Chem. Eng., 25, 581-585 (2014).   DOI
19 J. W. Choi, S. B. Lee, S. M. Lee, W. S. Park, and D. W. Chung, Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by bar Coating, Appl. Chem. Eng., 26, 331-335 (2015).   DOI
20 S. B. Lee, S. M. Lee, N. I. Park, S. H. Lee, and D. W. Chung, Preparation and characterization of conducting polymer nanocomposite with partially reduced graphene oxide, Synt. Met., 201, 61-66 (2015).   DOI
21 B. Yin, Q. Liu, L. Y. Yang, X. M. Wu, Z. F. Liu, Y. L. Hua, S. G. Yin, and Y. S. Chen, Buffer Layer of PEDOT:PSS/Graphene Composite for Polymer Solar Cells, J. Nanosci. Nanotechnol., 10, 1934-1938 (2010).   DOI
22 K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes, Langmuir, 27, 2014-2018 (2011).   DOI
23 S. Liu, J. Q. Tian, L. Wang, Y. L. Luo, and X. Q. Sun, Production of stable aqueous dispersion of poly(3,4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection, Analyst, 136, 4898-4902 (2011).   DOI
24 P. Amaladass, J. A. Clement, and A. K. Mohanakrishnan, Pd-mediated C-H arylation of EDOT and synthesis of push-pull systems incorporating EDOT, Tetrahedron, 63, 10363-10371 (2007).   DOI
25 N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide, Appl. Chem. Eng., 26, 99-103 (2015).   DOI
26 B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors, Macromolecules, 42, 6741-6747 (2009).   DOI