• 제목/요약/키워드: Surrounding Dose

검색결과 149건 처리시간 0.029초

임산부 흉부촬영 시 복부차폐의 적정성 평가 (Adequacy Assessment to Abdomen Shield of Pregnant X-ray Chest PA)

  • 김기진;김가중
    • 대한안전경영과학회지
    • /
    • 제17권4호
    • /
    • pp.207-212
    • /
    • 2015
  • When performing Chest x-ray examination to pregnant woman, normally we shield back side of abdomen. In this situation, scattered rays made by equipment and surrounding structure can enter front side of abdomen. Therefore, in this study, we evaluate suitability of abdomen shield especially to pregnant woman. In case of One shielding material placed back of abdomen, the measured value is $0.676{\pm}0.19uSv/hr$. Two shielding material is $0.764{\pm}0.04uSv/hr$. Three is $0.685{\pm}0.16uSv/hr$. The exposure dose inferred in this study does not excess annual effective dose limit. But It is not mean absolute safety. So we have to minimize occurrence of stochastic effect of radiosensitivity by shielding front side of abdomen of pregnant woman in clinic.

Low Dose Effect와 Non Monotonic Dose Responses(NMDRs) 그리고 의학적 의미 - 용량-반응관계의 새로운 패러다임을 중심으로 - (Low Dose Effect and Non Monotonic Dose Responses(NMDRs) and its Medical Meaning - Focusing on A New Paradigm of Dose-Response Relationship -)

  • 성 안젤라동민;신지연;이승은;박송미;오연지;이선동
    • 대한예방한의학회지
    • /
    • 제20권1호
    • /
    • pp.145-159
    • /
    • 2016
  • Objectives : The aim was to investigate the characteristics of low dose effect and non monotonic dose responses(NMDRs) and to predict the influence it might have on the health and medicine, traditional Korean medicine. Methods : By investigating recently published major literatures related to low dose effect and NMDRs, the definition, mechanism, major related fields, and the influence on public health and medicine has been categorized and summarized. Results : Although there are still heated debates about the definition of low dose, it implies the biological responses in environmental exposure level and the NDMDRs means the nonlinear relationship between the dose-response in the slope sign change. Also, it implies the new form of the curve showing a U, reverse U shape, and the slop sign constantly changing showing various forms. This mechanism is because the two acceptor shows opposing effects to toxic materials and the affinity is different along with the numerical value that increase and decrease being different. These characteristics generally appear in endocrine disrupters such as bisphenol A, agricultural pesticides, metal, and radiation. The research field in the public health and medical treatment is obesity, problems in metabolism, growth hormone treatment, climacteric treatment, breast cancer, intake of Korean traditional medicine for pregnancy, menopause and phytoestrogen. Conclusions : As a result of discussing implications, NMDRs is a particular effect in low dose and heated debates surround this response, research is being conducted surrounding the field of obesity, problems in metabolism, growth hormone treatment, climacteric treatment, breast cancer, intake of Korean traditional medicine for pregnancy, menopause, and phytoestrogen. More research and interest in needed as it can have a massive influence in the public health and medicine.

선량강도 조절법을 이용한 방사선치료 (Intensity Modulation in Radiation Therapy)

  • 김성규;김명세
    • 한국의학물리학회지:의학물리
    • /
    • 제8권2호
    • /
    • pp.27-34
    • /
    • 1997
  • 방사선치료에서 three dimensional conformal radiation therapy (3DCRT) 에 접근하는 방법으로 조사하는 방향에 따라 선량의 강도를 조절함으로서 암조직에만 집중적으로 선량을 조사하며 주위 정상조직에는 최소의 선량이 조사되도록 하는 방법으로 1990년대부터 Memorial Sloan-Kettering Cancer Center를 중심으로 연구되었다. 암조직의 치료부피를 최적화하기 위하여 암조직의 모양에 따라 선량분포곡선이 이루는 치료용적이 종양용적과 같아야 한다. 이러한 3DCRT는 암조직에 집중적으로 선량을 조사할 수 있어서 중요장기들의 한계선량을 유지하면서 암조직에 조사되는 선량을 20% 정도 증가시킬수 있다. 방사선치료의 궁극적인 목적이 종양부위에 균등한 치유선량이 도달되게하고 병변 부위의 정상조직의 손상을 최소가 되게 하는 것이며, 이러한 수행을 위하여 CT planning 등을 이용하여 치료계획을 수립하여 치료용적과 종양용적을 거의 같게 할 수 있다. 본 연구에서는 조사하는 부위에서 선량의 강도를 조절하여 암조직의 치료용적을 최적화하는 3DCRT를 얻는 것을 목적으로 폐암환자에서 강도 조절법을 사용한 치료계획에서 일반적인 치료계획을 시행한 경우를 비교하면 종양용적에 접근한 치료계획과 정상조직에 대한 선량 감소를 보여주고 있으며, 직장암 환자에서도 두 치료계획에서 선량분포가 잘 비교가 됨을 볼 수 있다.

  • PDF

첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰 (Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

랫드에서 매미눈꽃동충하초, Paecilomyces sinclairii의 13주 반복투여 독성에 관한 연구 (Thirteen-Week Repeated Oral Toxicity Study of Paecilomyces sinclairii in Sprague-Dawely Rats)

  • 안미영;지상덕;김지영;한재웅;이용기;이용우;류강선;이병무;정나진;김성남
    • Toxicological Research
    • /
    • 제20권4호
    • /
    • pp.339-348
    • /
    • 2004
  • Paecilomyces sinclairii was administered ad libitum feeding at percentage levels of 0, 1.25, 2.5, 5 and 10 percentage (calculated about 8 g/kg)/feeder for a period of 3 months. There was no observed clinical signs or deaths related to treatment in all groups tested. Therefore, the approximate lethal dose of P. sinclairii was considered to be higher than 8 g/kg in rats. Mild decreases in body weight gain were observed dose-dependently in P. sinclairii treated groups in dose response manner after 2 weeks. Interestingly, the weight of abdominal adipose tissues surrounding epididymides were greatly reduced by this Dongchunghacho, in parallel with the mild increase in body weight gain. However, the absolute weight change of other organs was not observed. There were not significantly different from the control group in urinalysis, ocular examination, hematological, serum biochemical value and histopathological examination. From these results, it is concluded that the no-observed-adverse-effect level (NOAEL) of P. sinclairii is less than 1.25% (1 g/kg) in rats in the present study.

AN INVESTIGATION INTO RADIATION LEVELS ASSOCIATED WITH DISMANTLING THE KOREA RESEARCH REACTOR

  • Choi, Geun-Sik;Kim, Hee-Reyoung;Han, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.468-473
    • /
    • 2010
  • We confirmed that the dismantling of two research reactors with thermal power of $2MW_{th}$ and $100kW_{th}$, respectively, reveals no significant difference between the radiation levels of the research reactor site and the surrounding environment far away from it, from the radiation level aspect. Radiation dose and radioactivity were measured at monitoring points around the research reactor site of the Korea Atomic Energy Research Institute (KAERI) in Seoul and comparison points 0.5 km to 3.3 km from the site. To grasp trends in the radiation levels during dismantling from the end of 2002 to the end of 2007, the gamma radiation dose rate, the accumulated dose, and the radioactivity of the strontium, tritium, and gamma isotopes were statistically treated and estimated. The averages of these items between the two groups, the research reactor site and comparison points, were assessed by applying a T-test with a significance level of 0.05. P-values found by using the T-test were from 0.12 to 0.83 where the values were much higher than the significance level. As a result, no difference was observed between the radiation levels at the research reactor site and at the comparison points by this T-test. This study showed that dismantling activity of the Korea Research Reactor of the Seoul site did not expose the public or the environment to harmful levels of radiation.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

두경부 종양의 적응방사선치료시 변형영상정합을 이용한 합성선량 평가 (The Evaluation of Composite Dose using Deformable Image Registration in Adaptive Radiotherapy for Head and Neck Cancer)

  • 황철환;고성진;김창수;김정훈;김동현;최석윤;예수영;강세식
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제36권3호
    • /
    • pp.227-235
    • /
    • 2013
  • 적응방사선치료(adaptive radiotherapy, ART)시 획득된 다단계 CT영상으로부터 변형영상정합을 이용하여 전체 처방선량에 대한 주변 정상조직의 합성선량을 획득하고, 각각의 단일 치료계획으로부터 합산되어진 선량을 비교분석하여 임상적 의의를 얻고자 한다. 2011년 5월 1부터 2012년 7월 31일까지 두경부 종양으로 3차원 입체조형치료, 세기변조방사선치료를 시행한 환자 중에서 치료기간 중 종양크기의 변화, 체중의 급격한 감소 등으로 인해 적응방사선치료를 시행한 환자를 대상으로 하였다. 변형영상정합을 이용하여 전체 처방선량에 대한 주변 정상조직의 합성선량을 획득할 수 있었으며, 단일 치료계획으로부터 합산되어진 선량과의 비교에서 하악골($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), 구강($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), 이하선($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy), 턱관절($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy)에서 차이의 결과를 보였다. 적응방사선치료시 변형영상정합에 의한 합성선량과 단일 치료계획으로부터 합산되어진 선량과의 유의한 차이를 확인할 수 있었으며, 다단계 CT영상을 사용하는 경우 변형영상정합에 의한 합성선량획득은 주변 정상조직에 대해 보다 정확한 평가가 가능할 것으로 사료된다.

Clonal plant as experimental organisms - DNA mutation rate evaluation in the radiation contaminated area of Fukushima Daiichi NPP accident

  • KANEKO, Shingo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.25-25
    • /
    • 2018
  • The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused severe radioactive contamination in the surrounding environment. Since the accident, much attention has been paid to the biological and genetic consequences of organism inhabiting the contaminated area. The effect of radiation exposure on genetic mutation rates is little known, especially for low doses and in situ conditions. Evaluating DNA mutation by low levels of radiation dose is difficult due to the rare mutation event and lack of sequence information before the accident. In this study, correlations with air dose levels and somatic DNA mutation rates were evaluated using Next Generation Sequencer for the clonal plant, Phyllostachys edulis. This bamboo is known to spread an identical clone throughout Japan, and it has the advantage that we can compare genetic mutation rate among identical clone growing different air dose levels. We collected 94 samples of P. edulis from 14 sites with air dose rates from $0.04{\sim}7.80{\mu}Gy/h$. Their clonal identity was confirmed by analysis using 24 microsatellite markers, and then, sequences among samples were compared by MIG sequence. The sequence data were obtained from 2,718 loci. About ~200,000 bp sequence (80 bp X 2,718 loci) were obtained for each sample, and this corresponds to about 0.01% of the genome sequence of P. edulis. In these sequences, 442 loci showed polymorphism patterns including recent origin mutation, old mutation, and sequence errors. The number of mutations per sample ranged from 0 to 13, and did not correlate with air dose levels. This result indicated that DNA mutations have not accumulated in P. edulis living in the air doses levels less than $10{\mu}Gy/h$. Our study also suggests that mutation rates can be assessed by selecting an appropriate experimental approach and analyzing with next generation sequencer.

  • PDF

전립선암의 근접치료 시 나노입자에 따른 흡수선량평가 (Evaluation of Absorbed Dose According to the Nanoparticle in Prostate Cancer Brachytherapy)

  • 박은태;이득희;임인철
    • 한국방사선학회논문지
    • /
    • 제12권2호
    • /
    • pp.167-172
    • /
    • 2018
  • 국내 남성에게서 많이 발생하는 전립선암을 대상으로, 근접치료 시 나노입자 사용에 따른 선량을 평가하여 기초자료를 제시하고자 하였다. 선량평가는 몬테카를로 시뮬레이션 기법인 MCNPX 프로그램을 이용하였다. 선원은 국내 HDR장비에 다용하는 $^{192}Ir$으로 선정하고 나노입자는 금, 가돌리늄, 산화철, 요오드를 사용하였다. 그 결과 표적장기인 전립선은 나노입자를 사용 시, 사용하지 않은 경우에 비해 모두 흡수선량이 높게 나타났다. 특히 금 나노입자가 $3.13E-03J/kg{\cdot}e$의 값으로 가장 높았다. 주변장기 및 주변인에 대한 선량은 나노입자 사용에 따른 차이가 크지 않은 것으로 나타났다. 나노입자 사용은 치료가능비를 상승시켜 치료효율을 증가시킬 수 있을 것으로 판단된다.