DOI QR코드

DOI QR Code

Evaluation of Absorbed Dose According to the Nanoparticle in Prostate Cancer Brachytherapy

전립선암의 근접치료 시 나노입자에 따른 흡수선량평가

  • Park, Eun-tae (Department of Radiation Oncology, Busan Paik Hospital, Inje University) ;
  • Lee, Deuk-hee (Department of Radiation Oncology, Busan Paik Hospital, Inje University) ;
  • Im, In-chul (Department of Radiological Science, Dongeui University)
  • 박은태 (인제대학교 부산백병원 방사선종양학과) ;
  • 이득희 (인제대학교 부산백병원 방사선종양학과) ;
  • 임인철 (동의대학교 방사선학과)
  • Received : 2018.01.30
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

This study evaluated absorbed dose of brachytherapy according to the nanoparticle in prostate cancer which many occurred in Korean man and provided basic data. Absorbed dose evaluation was using MCNPX program which was applied Monte Carlo simulation. Source was applied $^{192}Ir$ which was many using in Korean HDR machine and gold, ferric oxide, gadolinium and iodine nanoparticle were applied. Prostate absorbed dose result was increased when using nanoparticle, in particular gold nanoparticle was the highest result as $3.13E-03J/kg{\cdot}e$. Absorbed dose of surrounding organs and distance was similar between using nanoparticle and non-using nanoparticle. Therefore, brachytherapy was used nanoparticle was increased therapeutic ratio and efficiency of radiation therapy.

국내 남성에게서 많이 발생하는 전립선암을 대상으로, 근접치료 시 나노입자 사용에 따른 선량을 평가하여 기초자료를 제시하고자 하였다. 선량평가는 몬테카를로 시뮬레이션 기법인 MCNPX 프로그램을 이용하였다. 선원은 국내 HDR장비에 다용하는 $^{192}Ir$으로 선정하고 나노입자는 금, 가돌리늄, 산화철, 요오드를 사용하였다. 그 결과 표적장기인 전립선은 나노입자를 사용 시, 사용하지 않은 경우에 비해 모두 흡수선량이 높게 나타났다. 특히 금 나노입자가 $3.13E-03J/kg{\cdot}e$의 값으로 가장 높았다. 주변장기 및 주변인에 대한 선량은 나노입자 사용에 따른 차이가 크지 않은 것으로 나타났다. 나노입자 사용은 치료가능비를 상승시켜 치료효율을 증가시킬 수 있을 것으로 판단된다.

Keywords

References

  1. S. R. Im, "Analysis of Relative Factor and Estimate of Incidence Rate in Prostate Cancer: The Korean Cancer Prevention Study-II (KCPS-II)," Graduate School of Public Health Yonsei University Master's Thesis, pp. 71-72, 2015.
  2. National Cancer Information Center(https://www.cancer.go.kr), 2017
  3. W. Park, S. J. Huh, H. H. Choi, H. M. Lee, S. E. Chai, Y. C. Ahn, D. H. Lim, “Results of Definitive Radiotherapy in the Treatment of Prostate Cancer,” The Korean Urological Association, Vol. 46, No. 3, pp. 201-228, 2005.
  4. H. S. Chu, "Factors Affecting the Biochemical Recurrence after Radical Prostatectomy or Radiotherapy in Intermediate and High-risk Patients with Prostate Cancer," University of Ulsan Master's Thesis, pp. 1, 2009.
  5. S. S. Kang, I. H. Go, G. J. Kim, S. H. Kim, Y. S. Kim, Y. J. Kim, Radiation Therapeutics, third edition, Chung-ku munhwasa, Korea, 2014.
  6. D. H. Lee, E. T. Park, J. H. Kim, I. C. Im, “Evaluated Absorbed Dose According to Prescribed Dose and Therapeutic Technique in Radiation Therapy,” Journal of the Korean Society of Radiology, Vol. 10, No. 6, pp. 469-476, 2016. https://doi.org/10.7742/jksr.2016.10.6.469
  7. M. Zabihzadah, S. Arefian, “Tumor dose enhancement by nanoparticles during high dose rate 192Ir brachytherapy,” Journal of Cancer Research and Therapeutics, Vol. 11, No. 4, pp. 752-759, 2015. https://doi.org/10.4103/0973-1482.153668
  8. T. A. Moghaddas, M. Ghorbani, A. Haghparast, R. T. Fylnn, M. T. Eivazi, “Monte Carlo Study on Dose Enhancement Effect of Various Paramagnetic Nanoshells in Brachytherapy,” Journal of Medical and Biological Engineering, Vol. 34, No. 6, pp. 559-567, 2014.
  9. C. H. Hwang, S. S. Kang, J. H. Kim, “A Monte Carlo Study of Secondary Electron Production from Gold Nanoparticle in Kilovoltage and Megavoltage X-rays,” Journal of the Korean Society of Radiology, Vol. 10, No. 3, pp. 153-159, 2016. https://doi.org/10.7742/jksr.2016.10.3.153
  10. J. H. Kim, C. S. Im, J. H. Hwang, “Radiation Dose Calculation in the Surrounding Organs during Brachytherapy of Prostate Cancer,” Korean Journal of Medical physics, Vol. 19, No. 13, pp. 172-177, 2008.
  11. E. T. Park, J. H. Kim, “Dose Evaluation of the Man Adjacent to an Implanted Patient During the Prostate Cancer Brachytherapy,” Journal of the Korean Society of Radiology, Vol. 10, No. 1, pp. 39-44, 2016. https://doi.org/10.7742/jksr.2016.10.1.39
  12. O. N. Yang, S. S. Shin, W. S. Ahn, D. Y. Kim, W. S. Choi, K. T. Kwon, C. H. Lim, S. H. Lee, “Comparison of Treatment Planning on Dosimetric Differences Between 192Ir Sources for High-Dose Rate Brachytherapy,” Radiology and Nuclear Medicine, Vol. 39, No. 2, pp. 163-170, 2016.
  13. P. Retif, S. Pinel, M. Toussaint, C. Frochot, R. Chouikrat, T. Bastogne, M. B. Heyob, “Nanoparticles for Radiation Therapy Enhancement: the Key Parameters,” Theranostics, Vol. 5, No. 9, pp. 1030-1044, 2015. https://doi.org/10.7150/thno.11642
  14. G. L. Duc, I. Miladi, C. Alric, P. Mowat, E. B. Krisch, A. Bouchet, E. Khalil, C. Billotey, M. Janier, F. Lux, T. Epicier, P. Perriat, S. Roux, O. Tillement, “Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparicles,” American Chemical Society Nano, Vol. 5, No. 12, pp. 9566-9574, 2011.
  15. S. Unezaki, K. Maruyama, J. I. Hosoda, I. Nagae, Y. Koyanagi, M. Nakata, O. Ishida, M. Iwatsuru, S. Tsuchiya, “Direct measurement of the extravasation of polyethy- leneglycol coated liposomes into solid tumor tissue by in vivo fluorescence microscopy,” International Journal of Pharmaceutics, Vol. 144, No. 1, pp. 11-17, 1996. https://doi.org/10.1016/S0378-5173(96)04674-1