The Evaluation of Composite Dose using Deformable Image Registration in Adaptive Radiotherapy for Head and Neck Cancer

두경부 종양의 적응방사선치료시 변형영상정합을 이용한 합성선량 평가

  • Hwang, Chul-Hwan (Dept. of Radiation Oncology, Pusan National University Hospital) ;
  • Ko, Seong-Jin (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Chang-Soo (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Jung-Hoon (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Dong-Hyun (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Choi, Seok-Yoon (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Ye, Soo-Young (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kang, Se-Sik (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 황철환 (부산대학교병원 방사선종양학과) ;
  • 고성진 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김동현 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 최석윤 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 예수영 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2013.05.10
  • Accepted : 2013.08.30
  • Published : 2013.09.30

Abstract

In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), oral cavity($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), parotid gland($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy) and temporomandibular joint($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

적응방사선치료(adaptive radiotherapy, ART)시 획득된 다단계 CT영상으로부터 변형영상정합을 이용하여 전체 처방선량에 대한 주변 정상조직의 합성선량을 획득하고, 각각의 단일 치료계획으로부터 합산되어진 선량을 비교분석하여 임상적 의의를 얻고자 한다. 2011년 5월 1부터 2012년 7월 31일까지 두경부 종양으로 3차원 입체조형치료, 세기변조방사선치료를 시행한 환자 중에서 치료기간 중 종양크기의 변화, 체중의 급격한 감소 등으로 인해 적응방사선치료를 시행한 환자를 대상으로 하였다. 변형영상정합을 이용하여 전체 처방선량에 대한 주변 정상조직의 합성선량을 획득할 수 있었으며, 단일 치료계획으로부터 합산되어진 선량과의 비교에서 하악골($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), 구강($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), 이하선($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy), 턱관절($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy)에서 차이의 결과를 보였다. 적응방사선치료시 변형영상정합에 의한 합성선량과 단일 치료계획으로부터 합산되어진 선량과의 유의한 차이를 확인할 수 있었으며, 다단계 CT영상을 사용하는 경우 변형영상정합에 의한 합성선량획득은 주변 정상조직에 대해 보다 정확한 평가가 가능할 것으로 사료된다.

Keywords

References

  1. Chao KS, Wippold FJ, Ozyigit G, et al.: Determination and delineation of nodal target volume for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT, Int. J. Radiat. Oncol. Biol. Phys., 53, 1174-1184, 2002 https://doi.org/10.1016/S0360-3016(02)02881-X
  2. Purdy JA: Current ICRI definitions and volumes: Limitations and future directions, Semin. Radiat. Oncol., 1, 27-40, 2004
  3. Ahn PH, Chen CC, Ahn AI, et al.: Adaptive planning intensity-modulated radiation therapy for head and neck cancers: single-institution experience and clinical implicaitons, Int. J. Radiat. Oncol. Biol. Phys., 3, 677-685, 2011
  4. Hansen EK, Bucci MK, Quivey JM, et al: Repeat CT imaging and replanning during the course of IMRT of head-and-neck cancer, Int. J. Radiat. Oncol. Biol. Phys., 64, 355-362, 2006 https://doi.org/10.1016/j.ijrobp.2005.07.957
  5. Bak JN, Jeong KK, Keum KC, et al: On-line image guided radiation therapy using cone-beam CT(CBCT), J. Korean Soc. Ther. Radiol. Oncol., 24, 294-299, 2006
  6. Oh SJ, Kim SY, Suh TS, et al: How image quality affects determination of target displacement when using kV cone-beam computed tomograpy(CBCT), Korean J. Medical phys., 17, 207-211, 2006
  7. Wu Q, Chi Y, Chen PY, et al: Adaptive replanning strategies accounting for shrickage in head and neck IMRT, Int. J. Radiat. Oncol. Bilo. Phys., 75, 924-932, 2009 https://doi.org/10.1016/j.ijrobp.2009.04.047
  8. Keall P: 4-dimensional computed tomography imaging and treatment planning, Semin. Radiat. Oncol., 14, 18-90, 2004
  9. Zhang G, Huang TH, Feygelman V, et al: Generation of composite dose and biological effective dose(BED) ver multiple treatment modalities and multistage planning using deformable image registration, Med. Dosim., 35, 143-150, 2010 https://doi.org/10.1016/j.meddos.2009.05.001
  10. Lyman JT: Complicaiton probability as assessed form dose-volume histogram, Radiat. Res., 10, S13-S19, 1985
  11. Oetzel D, Schraube P, Hensley F, et al: Estimation of pneumonitis risk in three- dimensional treatment planning using dose-volume histogram analysis, Int. J. Radiat. Oncol. Biol. Phys., 33, 455-460, 1995 https://doi.org/10.1016/0360-3016(95)00009-N
  12. ICRU Report 62(supplement to ICRU 50): Prescribing, recording and Reporting Photon Beam Therapy, International Commission on Radiation Units and Measurements, Maryland, USA, 1999
  13. NEMA: Digital Imaging and Communications in Medicine(DICOM). Rosslyn, VA:National Electrical Manufacturers Association; 2001
  14. Barker JL, Gargen AS, Ang KK, et al: Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system, Int. J. Radiat. Oncol. Biol. Phys., 59, 960-970, 2004 https://doi.org/10.1016/j.ijrobp.2003.12.024
  15. Bhide SA, Davies M, Burke K, et al: Weekly volume and dosimetric changes during chemoradiotherapy with intensity-moudulated radiation therapy for head and neck cancer: a prospective observational study, Int. J. Radiat. Oncol. Biol. Phys., 76, 1360-1368, 2010 https://doi.org/10.1016/j.ijrobp.2009.04.005
  16. Lee C, Langen KM, Lu W, et al: Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformabel image registration, Int. J. Radiat. Oncol. Biol. Phys., 71, 1563-1571, 2008 https://doi.org/10.1016/j.ijrobp.2008.04.013
  17. Schwartz DL, Garden AS, Thomas J, et al: Adaptive radiotherapy for head-and-neck cancer: Initial clinical outcomes from a prospective trial, Int. J. Radiat. Oncol. Biol. Phys., 83, 986-993, 2011
  18. Lu W, Chen ML, Olivera GH, et al: Fast free-form deformable registration via calculus of variation, Phys. Med. Biol., 49, 3067-3087, 2004 https://doi.org/10.1088/0031-9155/49/14/003
  19. Lu W, Olivera GH, Chen Q, et al: Deformable registration of the planning image(KVCT) and the daily images(MVCT) for adaptive radiation therapy., Phys. Med. biol., 51, 4357-4374, 2006 https://doi.org/10.1088/0031-9155/51/17/015
  20. ICRP Pulicaiton 86: Prevention of accidental exposures to patients undergoing radiation therapy. International Commision on Radiatiological Protection, Oxford, Pergamon Press, 2000