• Title/Summary/Keyword: Surface-micromachining

Search Result 180, Processing Time 0.028 seconds

Design Method for Sublimation Drying System for Prevention of Stiction (점착방지를 위한 승화건조기의 설계방법)

  • Kim, Jong-Pal;Lee, Sang-Woo;Chun, Kuk-Jin;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2550-2552
    • /
    • 1998
  • The stiction phenomena poses a design constraint in surface micromachining by reducing the releasable size of the microstructure. This problem occurs during the fabrication process of surface micromachined microstructures during the wet etch of sacrificial layers. For the prevention of the sticking problem, the microsctructure is released by sublimation after the substitution of the sacrificial layer etchant with a sublimation material heated above its melting temperature. In the sublimation drying method, the sublimation materials such as p-dichlorobenzene, t-butyl alcohol, and cyclohexane are used. In this paper, a method for designing a sublimation drying system is developed, and its performance is experimentally evaluated.

  • PDF

Optimal Design and Implementation of 3D Shape Restoration System for Femto-second Laser Micromachining (펨토초 레이저 미세가공을 위한 3차원 형상 복원 시스템의 최적설계 및 구현)

  • Park, Jeong-Hong;Lee, Ji-Hong;Ko, Yun-Ho;Park, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.16-26
    • /
    • 2006
  • In this paper, we propose a 3D shape restoration system which measures height and surface shape of transparent ITO glass and delivers errors in focal length and incident angle of laser beam to femto-second laser micromachining. The proposed system is composed of a line scan laser, a high resolution camera, a linear motion guide synchronized to image capturing, and a control station. Also, we define the sensitivity indices that represent a relation between measurement error and a position of a camera and scan laser, and utilize it for optimum design. The results of the proposed system are compared with results of SPM(Scanning Probe Microscope) and prove the usefulness of the system.

Automotive Tire Pressure Sensors with Titanium Membrane (티타늄 박막을 이용한 자동차 타이어 압력센서)

  • Chae, Soo
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • In this work, mechanical characteristics of titanium diaphragm have been studied as a potential robust substrate and a diaphragm material for automotive tire pressure sensor. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on titanium diaphragm have been designed, fabricated and characterized. The fabrication process for micromachined titanium devices keeps the membrane and substrate being at the environment of 20 MPa pressure and $200^{\circ}C$ for a half hour and then subsequently cooled to $24^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated titanium film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the fabricated device is $9.45ppm\;kPa^{-1}$ with a net capacitance change of 0.18 pF over a range 0-210 kPa.

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Characteristics of poly 3C-SiC doubkly clamped beam micro resonators (양단이 고정된 빔형 다결정 3C-SiC 마이크로 공진기의 특성)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.217-217
    • /
    • 2009
  • This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with 60 ~ 100 ${\mu}m$ lengths, $10\;{\mu}m$ width, and $0.4\;{\mu}m$ thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the 60 ~ 100 ${\mu}m$ long cantilevers, the fundamental frequency appeared at 373.4 ~ 908.1 kHz. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

Improvement of bolometric properties of vanadium oxide by addition of tungsten (텅스텐 첨가에 의한 적외선 소자용 바나듐 옥사이드의 특성 향상)

  • Han, Yong-Hui;Choi, In-Hun;Kim, Geun-Tae;Shin, Hyeon-Jun;Chi, En;Moon, Seong-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.207-207
    • /
    • 2003
  • Uncooled infrared(IR) detectors that use a microbolometer with a large focal-plane array(FPA) have been developed with surface micromachining technology. There are many materials for microbolometers, such as metals, vanadium oxide, semiconductors and superconductors. Among theses, vanadium oxide is a promising material for uncooled microbolometers due to it high temperature coefficient of resistance(TCR) at room temperature. It is, however, is very difficult to deposit vanadium oxide thin films having a high TCR and low resistance because of the process limits in microbolometer fabrication. In general, vanadium oxides have been applied to microbolometer in mixed phases formed by ion beam deposition methods at low temperature with TCR in the range from -1.5 to -2.0%K.

  • PDF

Planar Vibratory Gyroscope using Electrostatic Actuation and Electromagnetic Detection (정전력 구동 및 전자력 검출형 평면 진송 각속도계)

  • 이상훈;임형택;이승기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1089-1092
    • /
    • 1995
  • A planar vibratory gyroscope using electrostatic actuation and electromagnetic detection is proposed. The gyroscope has large sensitivity and can be fabricated by using surface micrimachining, bulk micromachining and conventional machining technology. In this paper, the gyroscope and the electromagnetic detecting system equations are derived to determine the output characteristics for the planar vibratory gyroscope using electrostatic acturation and electromagnetic detection. The maximum output is obtained when the driving frequencyequals to the detecting frequency. The resonant frequencies of the resonator are determined by the beam stiffness, i.e. the material constants and spring dimensions. The dimensions of the beams are determined using the analytic vibration modelling. The expected resonant frequencies are 200Hz both and the sensitivity is 62mV/deg/sec with 4000 electronic circuit amplifying coefficient for an AC drive voltage of 3V bias voltage of 15V and DC field current of 50 mA.

  • PDF

Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures (레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조)

  • 신용산;손승우;정성호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.

Measurements of the Mechanical Properties of Electroplated Gold Microstructure (전해 도금된 마이크로 금 구조물의 기계적 특성 측정)

  • Baek, Chang-Wong;Kim, Yong-Kweon;Ahn, Yoo-Min
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.86-95
    • /
    • 2001
  • Mechanical properties of electroplated gold microstructures were determined from the micromachined beam structures. Cantilever and bridge beam structures of different length were fabricated by electroplating-surface micromachining technique, which is specially designed to realize an anchor structure close to an ideal fixed-boundary condition. Fabricated beams were electrostatically excited and their resonance frequencies were measured by optical system composed of laser displacement meter with dynamic signal analyzer. Young's modulus and mean residual stress were calculated from the measured frequencies of microbeams. In addtion, stress gradient was measured using deformation of released cantilever beam structure.

  • PDF

A Study on Frequency Properties of Bulk Acoustic Wave Resonators using PVDF (고분자 압전필름을 이용한 BAW 공진기의 주팍수 특성에 관한 연구)

  • 정영학;김응권;윤창진;송준태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1077-1079
    • /
    • 2003
  • This paper describes the development of bulk acoustic wave (BAW) resonators using a PolyVinyliDene Fluoride (PVDF). The resonators have an air gap between a substrate for acoustic isolation without surface micromachining. We measured the resonance frequency and the input reflection coefficient (S$\sub$11/) of resonators using vector network analyzer. The fundamental resonance in this experimental result was measured at 1.4 ㎓ with a return loss of -23.2 ㏈. We can confirm a possibility of resonator application as using a PVDF because it can fabricate the resonator without etching process.