DOI QR코드

DOI QR Code

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C

미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구

  • Dong-Guk Kim (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub)) ;
  • Deok-kyu Yoon (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub)) ;
  • Yongchan Lee (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub)) ;
  • Min-Uk Kim (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub)) ;
  • Jihyoung Roh (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub)) ;
  • Yohan Seo (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub)) ;
  • Kwan-Su Kang (Department of Biomedical Engineering, School of Medicine, Chungbuk National University) ;
  • Young Hun Jeong (Department of Mechanical Engineering, Kyungpook National University) ;
  • Kyung-Ah Kim (Department of Biomedical Engineering, School of Medicine, Chungbuk National University) ;
  • Tae-Ha Song (Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub))
  • 김동국 ((재)대구경북첨단의료산업진흥재단) ;
  • 윤덕규 ((재)대구경북첨단의료산업진흥재단) ;
  • 이용찬 ((재)대구경북첨단의료산업진흥재단) ;
  • 김민욱 ((재)대구경북첨단의료산업진흥재단) ;
  • 노지형 ((재)대구경북첨단의료산업진흥재단) ;
  • 서요한 ((재)대구경북첨단의료산업진흥재단) ;
  • 강관수 (충북대학교 의과대학 의용생체공학과) ;
  • 정영훈 (경북대학교 기계공학부) ;
  • 김경아 (충북대학교 의과대학 의용생체공학과) ;
  • 송태하 ((재)대구경북첨단의료산업진흥재단)
  • Received : 2023.11.13
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Keywords

Acknowledgement

본 연구는 2023년 산업통상자원부의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임(P0025996, 융합혁신지원단 기술지원사업).

References

  1. Ahn SH, Jeong JS, Kim SJ. Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices. Micromachines. 2019;10(8):508.
  2. Golda-Cepaa M, Engvallb K, Hakkarainenc M, Kotarbaa A. Recent progress on parylene C polymer for biomedical applications: A review. Prog. Org. Coat. 2020;140:105493.
  3. Kim J, Meng E. Micromachining of Parylene C for bioMEMS. Polym. Adv. Technol. 2016;27(5):564-76. https://doi.org/10.1002/pat.3729
  4. Calahorra A, Sali A, Drori L, Kenig S. Effect of Process Parameters on the Insulation Resistance of Conformal Coating for PCBs. Circuit World. 1987;13(3):40-2. https://doi.org/10.1108/eb043882
  5. Gluschke JG, Richter F, Micolich AP. A parylene coating system specifically designed for producing ultra-thin films for nanoscale device applications. Rev. Sci. Instrum. 2019;90(8):083901.
  6. Derylo MA, Morton KC, Baker LA. Parylene Insulated Probes for Scanning Electrochemical-Atomic Force Microscopy. Langmuir. 2011;27(22):13925-30. https://doi.org/10.1021/la203032u
  7. Iguchi N, Kasanuki H, Matsuda N, Shoda M, Ohnishi S, Hosoda S. Contact Sensitivity to Polychloroparaxylene Coated Cardiac Pacemaker. PACE. 1997;20(2):372-73. https://doi.org/10.1111/j.1540-8159.1997.tb06188.x
  8. Brancato L, Decrop D, Lammertyn J, Robert Puers R. Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. Mater. 2018;11(7):1109.
  9. https://lac.or.kr/page/board/board.php?bo_id=lac_tech&wr_id=6553. Accessed on 11 Dec 2020.
  10. Hara Y, Yamada M, Tatsukawa C, Takahashi T, Suzuki M, Aoyagi S. Fabrication of Stainless Steel Microneedle with Laser-Cut Sharp Tip and its Penetration and Blood Sampling Performance. Int. J. Autom. Technol. 2016;10(6):950-57. https://doi.org/10.20965/ijat.2016.p0950
  11. Li X, Wang CT, Zhang WG, Li YC. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2008;223(2):173-78.
  12. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci.: Mater. Med. 2016;27:118.
  13. Frazer RQ, Byron RT, Osborne PB, West KP. PMMA: An Essential Material in Medicine and Dentistry. J. Long-Term Eff. Med. 2005;15(6):629-39.
  14. Noh GB, Keum TK, Seo JE, Bashyal S, Eum NS, Kweon MJ, Lee SY, Sohn DH, Lee SK. Iontophoretic Transdermal Delivery of Human Growth Hormone (hGH) and the Combination Effect of a New Type Microneedle, Tappy Tok Tok®. Pharmaceutics. 2018;10(3):153.
  15. Choi SC. Improvement of the Adhesion Properties between Aluminum and a Parylene-C Film by Using the Duoplasmatron Ion Source. appl. sci. converg. technol. 2012;21(2):78-85. https://doi.org/10.5757/JKVS.2012.21.2.78
  16. Staufert S, Gutzwiller P, Mushtaq F,Hierold C. Surface Nanostructuring of Ti6Al4 V Surfaces for Parylene-C Coatings with Ultradurable Adhesion. ACS Appl. Nano Mater. 2018;1(4):1586-94. https://doi.org/10.1021/acsanm.8b00081
  17. Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig. 2021;51(5):503-17. https://doi.org/10.1007/s40005-021-00512-4
  18. Han SK, Lee SJ, Ha HY. Skin Moisturizing Effects of a Microneedle Patch Containing Hyaluronic Acid and Lonicerae flos. Processes. 2021:9(2);321.
  19. Zeniieh D, Bajwa A, Ledernez L, Urban G. Effect of Plasma Treatments and Plasma-Polymerized Films on the Adhesion of Parylene-C to Substrates. Plasma Process. Polym. 2013;10(12):1081-89. https://doi.org/10.1002/ppap.201300045
  20. Perton M, Costil S, Wong W, Poirier D, Irissou E, Legoux JG, Blouin A, Yue S. Effect of Pulsed Laser Ablation and Continuous Laser Heating on the Adhesion and Cohesion of Cold Sprayed Ti Coatings. J. Therm. Spray Technol. 2012;21(6):1322-33. https://doi.org/10.1007/s11666-012-9812-8
  21. Eum NS, Kim HK, Han JH, KIM SJ, Park HJ, Kang SW. Development of Micro-needle Device for Direct Drug Delivery into the Dermis. J. Biomed. Eng. Res. 2012;33(4):202-06. https://doi.org/10.9718/JBER.2012.33.4.202
  22. Ryu JH, Shin HY, Lee JG, Tae KS, Kim MS. Analysis of Hyaluronic Acid Microneedle Characteristics as Its Shapes. J. Biomed. Eng. Res. 2018;39(1):30-5.