• Title/Summary/Keyword: Surface system

Search Result 13,947, Processing Time 0.051 seconds

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF

A Study of the Machine Vision Algorithm for Quality Control of Concrete Surface Grinding Equipment (콘크리트 표면절삭 장비의 품질관리를 위한 머신비전 알고리즘 개발)

  • Kim, Jeong-Hwan;Seo, Jong-Won;Song, Soon-Ho;Lee, Won-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.983-986
    • /
    • 2007
  • Concrete surface grinding is required for flatness and adhesiveness of concrete surface. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding depend on the levels of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the graphic MMI program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

  • PDF

Development for Finishing Method of Concrete Structures Applying Metal Spraying System (금속용사 시스템을 이용한 콘크리트 구조물의 마감공법 개발)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1225-1228
    • /
    • 2001
  • The purpose of this study is to develop for finishing method of concrete structures applying metal spraying system. In the experiments, the pull out tests were conducted using the specimen which was applied by various surface treatment of concrete substrate. As a result, it was confirmed that the adhesion strength of metal spray was effected by surface condition of concrete and the construction of primer or the coarse surface agent to the concrete substrate is very effective to the new finishing method of concrete for the metal spraying system.

  • PDF

Molecular Simulation of Influence of Surface Energy on Water Lubrication (표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구)

  • Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Development of Precise Measuring System for Hot Strip Mill's Rolls (열간압연용 롤 정밀 측정시스템 개발)

  • 이성진;이영진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.614-618
    • /
    • 2002
  • In hot strip mills, Portable Roll Scanner (the portable roll surface temperature and profile measuring device) can be used to calibrate on-line Process models for strip crown and flatness by measuring the thermal expansion and wear profile of the rolls. And the surface temperature measurement can be used to optimize the roll cooling system. Portable Roll Scanner consists of the measuring device, which has two contact inductive distance transducers for roll profile measurement and one infrared Pyrometer for surface temperature measurement, and computer-based controller that is equipped with the measuring device. By the wireless data communication, the data is transferred to the memory of notebook for further analysis. After roll extraction from mills, Portable Roll Scanner measure the roll profile and surface temperature simultaneously along the work roll face and display the results in the TFT color monitor of notebook. Portable Roll Scanner is useful at mill-side and roll grinding shop.

  • PDF

Detoxification Properties of Surface Aminated Cotton Fabric (아민화 표면 처리된 면직물의 제독 성능 연구)

  • Kim, Changkyu;Kwon, Woong;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • Pursuing the fabric materials for military chemical warfare protective clothing with the improved detoxification properties, this study investigated the simple and effective cotton treatment method using pad-dry-cure process and 3-aminopropyltrimethox ysilane(APTMS) solution for surface amination. Detoxification properties of the untreated and treated cotton fabrics were evaluated via decontamination of chemical warfare agent simulant, DFP(diisopropylfluorophosphate). The surface aminated cotton fabric increased the rate of the hydrolysis of DFP by the factor of 3 and the decontamination ratio reached 88.2% after 24h. Therefore, the surface amination of the cotton fabric with APTMS can be an effective pathway to prepare the material for protective clothing against chemical warfare agents.

Monitoring of Grinding Wheel Wear in Surface Grinding Process by Using Laser Scanning Micrometer

  • Ju, Kwang-Hun;Kim, Hyun-Soo;Hong, Seong-Wook;Park, Chun-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • This paper deals with the monitoring of grinding wheel wear in surface grinding process. A monitoring system, which makes use of a laser scanning micrometer, is developed to measure the circumferential shape as well as the axial profile of grinding wheel. The monitoring system is applied to surface grinding processes. The experimental results show that the developed monitoring system is useful not only for monitoring the amount of wear in grinding wheel but also for evaluation the quality of ground surface and determining proper derssing time for the grinding wheel.

  • PDF

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

Surface Form Measurement Using Single Shot Off-axis Fizeau Interferometry

  • Abdelsalam, Dahi Ghareab;Baek, Byung-Joon;Cho, Yong-Jai;Kim, Dae-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.409-414
    • /
    • 2010
  • This paper describes the surface form measurement of a spherical smooth surface by using single shot off-axis Fizeau interferometry. The demodulated phase map is obtained and unwrapped to remove the $2\pi$ ambiguity. The unwrapped phase map is converted to height and the 3D surface height of the surface object is reconstructed. The results extracted from the single shot off-axis geometry are compared with the results extracted from four-frame phase shifting in-line interferometry, and the results are in excellent agreement.