• Title/Summary/Keyword: Surface residual stress

Search Result 716, Processing Time 0.031 seconds

Factors Affecting Stress Corrosion Cracking Susceptibility of Alloy 600 MA Steam Generator Tubes

  • Kang, Yong Seok;Lee, Kuk Hee;Shin, Dong Man
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.22-25
    • /
    • 2021
  • In the past, Alloy 600 nickel-based alloys have been widely used in steam generators. However, most of them have been replaced by thermally treated alloy 690 tubes in recent years because mill annealed alloy 600 materials are known to be susceptible to stress corrosion cracking. Unlike this general perception, some steam generators using mill annealed alloy 600 tubes show excellent performance even though they are designed, manufactured, and operated in the same way. Therefore, various analyses were carried out to determine causes for the degradation of steam generators. Based on the general stress corrosion cracking mechanism, tube material susceptibility, residual stress, and sludge deposits of steam generators were compared to identify factors affecting stress corrosion cracking. It was found that mill annealed alloy 600 steam generator tubes showed higher resistance to stress corrosion cracking when the amount of sludge deposits on tube surface was smaller and residual stress generated during the fabrication was lower.

Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films (입방정 질화붕소 박막의 잔류응력 형성에 미치는 산소 첨가 효과)

  • Jang, Hee-Yeon;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon;Lim, Dae-Soon;Jeong, Jeung-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • In this study we investigated the oxygen effect on the nucleation and its residual stress during unbalanced magnetron sputtering. Up to 0.5% in oxygen flow rate, cubic phase (c-BN) was dominated with extremely small fraction of Hexagonal phase (h-BN) of increasing trend with oxygen concentration, whereas hexagonal phase is dominated beyond 0.75% flow rate. Interestingly, the residual stress in cubic-phase-dominated films was substantially reduced with small amount of oxygen (${\sim}0.5%$) down to a low value comparable to the h-BN case. This may be because oxygen atoms break B-N $sp^3$ bonds and make B-O bonds more favorably, increasing $sp^2$ bonds preference, as revealed by FTIR and NEXAFS. It was confirmed by experimental facts that the threshold bias voltage for nucleation and growth of cubic phase were increased from -55 V to -70 V and from -50 V to -60 V respectively. The reduction of residual stress in O-added c-BN films is seemingly resulting from the microstructure of the films. The oxygen tends to increase slightly the amount of h-BN phase in the grain boundary of c-BN and the soft h-BN phase of 3D network including surrounding nano grains of cubic phase may relax the residual stress of cubic phase.

Analysis of Residual Stresses for the Multipass Welds of 316L Stainless Steel Pipe by Neutron Diffraction Method (중성자 회절법에 의한 316L 스테인리스강 배관 다층용접부의 잔류응력 해석)

  • 김석훈;이재한
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.64-70
    • /
    • 2003
  • Multipass welds of the 316L stainless steel have been widely employed in the pipes of Liquid Metal Reactor. Owing to localized heating and subsequent rapid cooling by the welding process, the residual stress arises in the weld of the pipe. In this study, the residual stresses in the 316L stainless steel pipe welds were calculated by the finite element method using ANSYS code. Also, the residual stresses both on the surface and in the interior of the thickness were measured by HRPD(High Resolution Powder Diffractometer) instrumented in HANARO Reactor. The experimental data and the calculated results were compared and the characteristics of the distribution of the residual stress discussed.

The Effect of Compressive Residual Stress on Computer Corrosion Fatigue Crack of SAE 5155 (SAE 5155강의 컴퓨터부식피로 균열에 미치는 압축잔류응력의 영향)

  • Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyung-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-40
    • /
    • 2007
  • Antifatigue failure technology take an important part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper the effect of compressive residual stress and corrosion of spring steel(SAE 5155)by shot-peening on fatigue crack growth characteristics in stress ratio(R=0.05)was investigated with considering fracture mechanics. By using the methods mentioned above, We arrived at the following conclusions. The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material. And in stage I, ${\Delta}Kth$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material was higher than that of the un-peening material. That is concluded from effect of da/dN. Finally fracture of shot-peening material and un-peening material was identified and discussed in this study.

  • PDF

Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Jong-Sung;Kim, Maan-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1412-1422
    • /
    • 2016
  • Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

A Study on the Corrosion Characteristics of Gear Steel by Shot Peening (쇼트피닝에 의한 기어강의 부식특성에 관한 연구)

  • Kang, Jin-Shik;Kim, Tae-Hyung;Yoon, Jong-Ku;Cheong, Seong-Kyun;Lee, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.216-221
    • /
    • 2001
  • The surface treatment technique to increase corrosion resistance is very important in mechanical components of structures. Therefore, this paper investigates the effects of shot peening on the corrosion resistance of SCM 420steel. The results show that the surface compressive residual stress largely increases, which cause the increase of corrosion resistance.

  • PDF

The Stress Analysis of Semiconductor Package (반도체 패키지의 응력 해석)

  • Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.14-19
    • /
    • 2008
  • In the semiconductor IC(Integrated Circuit) package, the top surface of silicon chip is directly attached to the area of the leadframe with a double-sided adhesive layer, in which the base layer have the upper adhesive layer and the lower adhesive layer. The IC package structure has been known to encounter a thermo-mechanical failure mode such as delamination. This failure mode is due to the residual stress on the adhesive surface of silicon chip and leadframe in the curing-cooling process. The induced thermal stress in the curing process has an influence on the cooling residual stress on the silicon chip and leadframe. In this paper, for the minimization of the chip surface damage, the adhesive topologies on the silicon chip are studied through the finite element analysis(FEA).

Study for Thermal Stability of Liquid Crystal Device (액정 소자의 열적 안전성에 관한 연구)

  • 이상극;황정연;서대식;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.439-442
    • /
    • 2004
  • In this study, we investigated about electrooptics characteristic of three kinds of TN cell on the polyimide surface. Monodomain alignments of thermal stressed TN cell over temperature of liquid crystal isotropic phase were almost the same as that of no thermal stressed TN cells. However, the thermal stressed TN cells have many defects. Also, threshold voltage and response time of thermal stressed TN cells show the same performances as no thermal stressed TN cells. There were little changes of value in these TN cells. However, transmittances of TN cells on the polyimide surface decrease with increasing thermal stress time. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface shows decrease of characteristics as increasing thermal stress time. Therefore, the thermal stability of TN cell was decreased by high thermal stress for the long times.

Fracture Mechanics Analysis of the Steam Generator Tube after Shot Peeing (숏피닝 증기 발생기 전열관의 파괴역학적 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1180-1185
    • /
    • 2003
  • One of the main degradation of steam generator tubes is stress corrosion cracking induced by residual stress. The resulting damages can cause tube bursting or leakage of the primary water which contained radioactivity. Primary water stress corrosion crack occurs at the location of tube/tubesheet hard rolled transition zone. In order to investigate the effect of shot peening on stress corrosion cracking, stress intensity factors are calculated for the crack which is located in the induced residual stress field.

  • PDF

A study on the synthesis and mechanical properties of WC/C multilayered films (WC/C 다층박막의 합성 및 기계적 특성에 관한 연구)

  • 명현식;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • WC/C multilayered films were deposited by arc ion plating and magnetron sputter hybrid system with various $C_2$H$_2$ flow rates and bias voltages. The coatings have been characterized with respect to their chemical composition (Glow Discharge Optical Emission Spectroscopy), hardness(Knoop micro-hardness), residual stress(Laser beam bending) and friction coefficient(Ball on disc type wear test). Deposition rate, microhardness and residual stress of WC/C films were observed to increase with increasing the $C_2$$H_2$ flow rates. The highest hardness and residual stress were measured to be 26.5 GPa and 1.1GPa for, WC/C film deposited at substrate bias of -100V. WC/C multilayered film was obtained very low friction coefficient(~0.1).