• Title/Summary/Keyword: Surface plasmon resonance sensor

Search Result 79, Processing Time 0.027 seconds

Biosensors (바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.423-427
    • /
    • 2000
  • Intense research on biosensors has been performed in a number of different institution over the past 15 years, but relatively few commercial products have resultingly, the blood glucose sensor is a good example of a product which penetrated the market. However recently, the development of electrochemical and optical technologies has accelerated the turnover of the research as is illustrated by a rapid increase in the number of point-of-care diagnostic systems and analytical devices. Examples of such biosensors used in the fields of medical diagnostics, bioprocess control, and environmental monitoring are described, and summarized in an introduction to their characteristics, structures, and functions, given.

  • PDF

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap

  • Hwang, Inyong;Lee, Jongwon;Jung, Joo-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.

Nano SPR Biosensor for Detecting Lung Cancer-Specific Biomarker (폐암 바이오마커 검출용 나노SPR 바이오센서)

  • Jang, Eun-Yoon;Yeom, Se-Hyuk;Eum, Nyeon-Sik;Han, Jung-Hyun;Kim, Hyung-Kyung;Shin, Yong-Beom;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.144-149
    • /
    • 2013
  • In this research, we developed a biosensor to detect lung cancer-specific biomarker using Anodic Aluminum Oxide (AAO) chip based on interference and nano surface plasmon resonance (nanoSPR). The nano-porous AAO chip was fabricated $2{\mu}m$ of pore-depth by two-step anodizing method for surface uniformity. NanoSPR has sensitivity to the refractive index (RI) of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized to the Au-deposited surface of nano-porous AAO chip. To detect the lung cancer-specific biomarker, antibodies were immobilized on the surface of the chip by Self Assembled Monolayer (SAM) method. Since then lung cancer-specific biomarker was applied atop the antibodies immobilized layer. The specific reaction of the antigen-antibody contributed to the change in the refractive index that cause shift of resonance spectrum in the interference pattern. The Limit of Detection (LOD) was 1 fg/ml by using our nano-porous AAO biosensor chip.

Fabrication of Surface Enhancement Raman Scattering(SERS) substrate for high sensitivity chemical detection Sensor by Thermal evaporation (열증착법을 이용한 고감도 화학물질 검출 센서용 표면증강라만산란(SERS) 기판 제작)

  • Kim, An-Na;Han, Min-A;Kim, Hyeon-Jong;Park, Yeong-Min;Lee, Ho-Nyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.83-83
    • /
    • 2018
  • 최근 의료, 보건, 헬스케어 분야에 대한 관심이 증가함에 따라 질병의 조기 진단 연구가 각광 받고 있다. 특히 표면증강 라만 산란 (Surface Enhancement Raman scattering)은 고분자 검출을 위해 가장 유용한 물리 화학적 기법으로 SERS를 활용한 특정물질 검출 기술 개발에 대한 연구가 많이 이루어지고 있다. 나노구조의 국부적 표면 플라즈몬의 공명조건 (Surface Plasmon Resonance, SPR)으로 유도된 전자기장은 우수한 SERS 신호를 나타낸다. 따라서 표면 플라즈몬 공명 효과는 귀금속 나노입자의 종류, 크기 및 형태, 기판의 형상 및 구조 등에 의해서 달라지게 되므로 이들을 조절하여 보다 민감한 SERS 신호를 얻을 수 있다. 본 연구에서는 고감도 SERS-Active 기판을 제작하기 위해 SERS 기판 표면의 나노구조를 최적화 하였다. SERS 기판 표면을 제어하기 위해 공정파워, 공정압력, 기판의 온도 등의 증착공정 변수에 변화를 주어 표면의 나노구조를 형성하였다. 이를 분석하기 위해 SEM 분석을 통해 피라미드형 실리콘 기판 표면의 Au 나노구조 금속 박막을 확인하였고, XRD를 이용하여 결정성 및 결정크기를 확인하였다. Rhodamine 6G를 이용한 라만 분석을 통해 SERS 신호의 강도를 알 수 있었다. 금속 나노구조의 형태, 온도 제어를 통해 SERS 신호강도가 우수한 나노구조 기판을 제조 할 수 있었다.

  • PDF

Characteristics of Gold and Silver Based Bi- and Tri-metallic SPR Chip in the Intensity Measurement Mode (반사광 측정 모드에서 금과 은을 사용한 이층 금속 칩과 삼층 금속 칩의 특성 연구)

  • Kim, Hyungjin;Kim, Chang-duk;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.143-147
    • /
    • 2016
  • Characteristics of the conventional gold (Au) surface plasmon resonance (SPR) chip, bi-metallic(Au/silver (Ag)) SPR chip, and tri-metallic(Au/Ag/Au) SPR chip were investigated and compared in the intensity measurement mode for the enhancement of SPR image sensor reactivity. Reflectance curves of the Au, bi- and tri-metallic SPR chips were acquired in phosphate-buffered saline (PBS) solution and were compared. The line width of the reflectance curve of the bi-metallic chip was the narrowest among the three different types of the chips. Also, the tangential slope of the bi-metallic chip was steeper than those of the other chips. Various concentrations of bovine serum albumin (BSA) were utilized in the SPR experiment. As a result, among the above three chips reflectance variation value of the bi-metallic chip was the largest.

Characteristics of Gold and Silver Bimetallic Surface Plasmon Resonance Chip in Intensity Measurement Mode and Calculation of Refractive Index using Critical Angle (반사광 측정 모드에서 금과 은의 쌍금속 표면 플라즈몬 공명 칩의 특성과 임계각을 이용한 굴절률 계산)

  • Kim, Hyungjin;Lee, Sung-Youp;Kim, Hong Tak;Yang, Ki-Won;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.423-428
    • /
    • 2015
  • A bimetallic chip made of gold and silver was investigated in intensity interrogation mode to confirm enhancement of the SPR sensor resolution. Both reflectance curves of the bimetallic chip and the conventional gold chip was acquired and compared. The line width of the reflectance curve of the bimetallic chip was narrower than that of the conventional Au chip, resulting in steeper tangential slope. The reflectance was monitored at the angle related to the steepest tangential slope. The change in reflectance of the bimetallic chip was larger than that of the Au chip. The critical angle was analyzed by differentiating the reflectance with respect to incident angle twice. Acquiring the critical angle regarding to the sample informs the refractive index of the sample. Using various concentration of Bovine Serum Albumin, we confirmed that refractive index was linearly related to variation of reflectance of the bimetallic chip.

A review on gold nanowire based SERS sensors for chemicals and biological molecules

  • Rashida Akter;Hyuck Jin Lee;Toeun Kim;Jin Woo Choi;Hongki Kim
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.201-210
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique for detecting and analyzing chemical and biological molecules at ultra-low concentrations. The effectiveness of SERS largely depends on structures with sub-10 nm gaps, prompting the proposal of various nanostructures as efficient SERS-active platforms. Among these, single-crystalline gold nanowires (AuNWs) are particularly promising due to their large dielectric constants, well-defined geometries, atomically smooth surfaces, and surface plasmon resonance across the visible spectrum, which produce strong SERS enhancements. This review comprehensively explores the synthesis, functionalization, and application of Au NWs in SERS. We discuss various methods for synthesizing AuNWs, including the vapor transport method, which influences their morphological and optical properties. We also review practical applications in chemical and biosensing, showcasing the adaptability of Au NWs-based SERS platforms in detecting a range of analytes, from environmental pollutants to biological markers. The review concludes with a discussion on future perspectives that aim to enhance sensor performance and broaden application domains, highlighting the potential of these sensors to revolutionize diagnostics and environmental monitoring. This review underscores the transformative impact of AuNW-based SERS sensors in analytical chemistry, environmental science, and biomedical diagnostics, paving the way for next-generation sensing technologies.

A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule (회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩)

  • Jin, Young-Hyun;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.