DOI QR코드

DOI QR Code

Characteristics of Gold and Silver Bimetallic Surface Plasmon Resonance Chip in Intensity Measurement Mode and Calculation of Refractive Index using Critical Angle

반사광 측정 모드에서 금과 은의 쌍금속 표면 플라즈몬 공명 칩의 특성과 임계각을 이용한 굴절률 계산

  • Kim, Hyungjin (Dept. of Biomedical Engineering, Catholic University of Daegu) ;
  • Lee, Sung-Youp (Dept. of Physics, Kyungpook National Unversity) ;
  • Kim, Hong Tak (Dept. of Physics, Kyungpook National Unversity) ;
  • Yang, Ki-Won (Dept. of Physics, Kyungpook National Unversity) ;
  • Sohn, Young-Soo (Dept. of Biomedical Engineering, Catholic University of Daegu)
  • 김형진 (대구가톨릭대학교 의공학과) ;
  • 이성엽 (경북대학교 물리학과) ;
  • 김홍탁 (경북대학교 물리학과) ;
  • 양기원 (경북대학교 물리학과) ;
  • 손영수 (대구가톨릭대학교 의공학과)
  • Received : 2015.10.07
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

A bimetallic chip made of gold and silver was investigated in intensity interrogation mode to confirm enhancement of the SPR sensor resolution. Both reflectance curves of the bimetallic chip and the conventional gold chip was acquired and compared. The line width of the reflectance curve of the bimetallic chip was narrower than that of the conventional Au chip, resulting in steeper tangential slope. The reflectance was monitored at the angle related to the steepest tangential slope. The change in reflectance of the bimetallic chip was larger than that of the Au chip. The critical angle was analyzed by differentiating the reflectance with respect to incident angle twice. Acquiring the critical angle regarding to the sample informs the refractive index of the sample. Using various concentration of Bovine Serum Albumin, we confirmed that refractive index was linearly related to variation of reflectance of the bimetallic chip.

Keywords

References

  1. Y. S. Shin, J. H. Yoon, and D. G. Hwang, "Establishing a new paradigm for healthcare", Korea institute for Health and social affairs. 2012.
  2. S. K. Kim, D. H. Ahn, H. J. Kim, and G. S. Sin, "How to Make Healthcare Industry More Competitive Through Innovation", Science and technology policy institute, 2012.
  3. http://crpc.kist.re.kr/kor/_03info/brief_view.jsp?bkey=1437 (retrieved on Aug. 20, 2015).
  4. P. J. Conroy, S. Hearty, P. Leonard, and R. J. O'Kennedy, "Antibody production, design and use for biosensor based applications", Semin. Cell Dev. Biol., Vol. 20, pp. 10-26, 2009. https://doi.org/10.1016/j.semcdb.2009.01.010
  5. R. M. Lequin, "Enzyme Immunoassay(EIA)/Enzyme Linked Immunosorbent Assay", Clin. Chem., Vol. 51, pp. 2415-2418, 2005. https://doi.org/10.1373/clinchem.2005.051532
  6. S. K. Vashist, E. M. Schneider, and J. H. T. Luong, " Rapid psandwich ELISA-based in vitro diagnostic procedure for the highly-sensitive detection of human fetuin A", Biosensors and Bioelectronics, Vol. 67, pp. 73-78, 2015. https://doi.org/10.1016/j.bios.2014.06.058
  7. S. H. Choi, Y. M. Yang, and J. S. Chae, " Surface plasmon resonance protein sensor using Vroman effect", Biosensors and Bioelectronics, Vol. 24, pp. 893-899, 2008. https://doi.org/10.1016/j.bios.2008.07.036
  8. H. Sipova, and J. Homola, "Surface plasmon resonance sensing of nucleic acids: A review", Analytica Chimica Acta, Vol. 773, pp. 9-23, 2013. https://doi.org/10.1016/j.aca.2012.12.040
  9. C. Bian, J. Tong, J. Sun, and H. Zhang, Q. Xue, S. Xia, "A field effect transistor(FET)-based immunosensor for detection of HbA1c and Hb", Biomed. Microdevices, Vol.13, No. 2, pp. 345-352, 2011. https://doi.org/10.1007/s10544-010-9498-y
  10. Y. Liu, L. M. Schweizer, W. Wang, R. Reuben, M. Schweizer, and W. Shu, "Label-free and real-time monitoring of yeast cell growth by the bending of polymer microcantilever biosensors", Sensors and Actuators B. Vol. 178, pp. 621-626, 2013. https://doi.org/10.1016/j.snb.2012.12.111
  11. Y. K. Lee, Y. -S. Sohn, K. -S. Lee, W. M. Kim, and J. -O. Lim, "Waveguide-coupled bimetallic film for enhancing the sensitivity of a surface plasmon resonance sensor in a fixedangle mode", Journal of the Korean Physical Society, Vol. 62, No. 3, pp. 475-480, 2013. https://doi.org/10.3938/jkps.62.475
  12. Y. K. Lee, K. -S. Lee, W. M. Kim, and Y. -S. Sohn, "Detection of amyloid-${\beta}42$ using a waveguide coupled bimetallic surface plasmon resonance sensor chip in the intensity measurement mode", PLoS ONE, Vol. 9, Issue 6, e98992, 2014. https://doi.org/10.1371/journal.pone.0098992
  13. A. K. Sharma, and B. D. Gupta, "On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors", Journal of applied physics, Vol. 7, 093111, 2007.
  14. S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, "Bimetallic layers increase sensitivity of affinity sensors basedon surface plasmon resonance", Sensors, Vol. 2, pp. 62-70, 2002.
  15. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review", Sensors and Actuators B, Vol. 54, pp. 3-15, 1999. https://doi.org/10.1016/S0925-4005(98)00321-9
  16. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sensors and Actuators B, Vol. 114, pp. 1028-1034, 2006. https://doi.org/10.1016/j.snb.2005.07.064
  17. L. Xia, S. Yin, H. Gao, Q. Deng, and C. Du, "Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration", Plasmonics, Vol. 6, pp. 245-250, 2011. https://doi.org/10.1007/s11468-010-9195-y
  18. F. -C. Chien, and S. -J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes", Biosensors and Bioelectronics, Vol. 20, pp. 633-642, 2004. https://doi.org/10.1016/j.bios.2004.03.014

Cited by

  1. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip vol.69, pp.5, 2016, https://doi.org/10.3938/jkps.69.793
  2. Characteristics of Gold and Silver Based Bi- and Tri-metallic SPR Chip in the Intensity Measurement Mode vol.25, pp.2, 2016, https://doi.org/10.5369/JSST.2016.25.2.143