• Title/Summary/Keyword: Surface organic chemistry

Search Result 406, Processing Time 0.028 seconds

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.

Preparation and Characterization of Crosslinked Sodium Alginate Membranes for the Dehydration of Organic Solvents

  • Goo, Hyung Seo;Kim, In Ho;Rhim, Ji Won;Golemme, Giovanni;Muzzalupo, Rita;Drioli, Enrico;Nam, SangYong
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • In recent years, an increasing interest in membrane technology has been observed in chemical and environmental industry. Membrane technology has advantages of low cost, energy saving and environmental clean technology comparing to conventional separation processes. Pervaporation is one of new advanced membrane technology applied for separation of azeotropic mixtures, aqueous organic mixtures, organic solvent and petrochemical mixtures. Sodium alginate composite membranes were prepared for the enhancement of long-term stability of pervaporation performance of water-ethanol mixture using pervaporation. Sodium alginate membranes were crosslinked with CaCl$_2$ and coated with polyelectrolyte chitosan to protect washing out of calcium ions from the polymer. The surface structures of PAN and hydrolysed PAN membrane were confirmed by ATR Fourier transform infrared (FT-IR). A field emission scanning electron microscopy (FE-SEM; Jeol 6340F) operated at 15 kV. Concentration profiles for Ca in the membrane surface and membrane cross-section were taken by an energy dispersive X-ray (EDX) analyser (Jeol) attached to the field emission scanning electron microscopy (Jeol 6340F). Pervaporation experiments were done with several operation run times to investigate long-term stability of the membranes.

Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2

  • Naseri, Maryam;Fotouhi, Lida;Ehsani, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Metal-organic frameworks have recently been considered very promising modifiers in electrochemical analysis due to their unique characteristics among which tunable pore sizes, crystalline ordered structures, large surface areas and chemical tenability are worth noting. In the present research, $Cu(btec)_{0.5}DMF$ was electrodeposited on the surface of glassy carbon electrode at room temperature under cathodic potential and was initially used as the active materials for the detection of $H_2O_2$. The cyclic voltammogram of $Cu(btec)_{0.5}DMF$ modified GC electrode shows distinct redox peaks potentials at +0.002 and +0.212 V in 0.1 M phosphate buffer solution (pH 6.5) corresponding to $Cu^{(II)}/Cu^{(I)}$ in $Cu(btec)_{0.5}DMF$. Acting as the electrode materials of a non-enzymatic $H_2O_2$ biosensor, the $Cu(btec)_{0.5}DMF$ brings about a promising electrocatalytic performance. The high electrocatalytic activity of the $Cu(btec)_{0.5}DMF$ modified GC electrode is demonstrated by the amperometric response towards $H_2O_2$ reduction with a wide linear range from $5{\mu}M$ to $8000{\mu}M$, a low detection limit of $0.865{\mu}M$, good stability and high selectivity at an applied potential of -0.2 V, which was higher than some $H_2O_2$ biosensors.

Hydrosilylation of Photoluminescent Porous Silicon with Aromatic Molecules; Stabilization of Photoluminescence and Anti-photobleaching Properties of Surface-Passivated Luminescent Porous Silicon

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.147-154
    • /
    • 2021
  • A luminescent porous silicon sensor, whose surface was passivated with organic molecule via hydrosilylation under various conditions, has been researched to measure the photoluminescence (PL) stability of porous silicon (PSi). Photoluminescent PSi were synthesized by an electrochemical etching of n-type silicon wafer under the illumination with a 300 W tungsten filament bulb during the etching process. The PL of PSi displayed at 650 nm, which is due to the quantum confinement of silicon quantum dots in the PSi. To stabilized the photoluminescence of PSi, the hydrosilylation of PSi with silole molecule containg vinyl group was performed. Surface morphologies of fresh PSi and surface-modified PSi were obtained with a cold FE-SEM. Optical characterization of red photoluminescent silicon quantum dots was investigated by UV-vis and fluorescence spectrometer.

Review of Recent Smog Chamber Studies for Secondary Organic Aerosol (스모그 챔버를 이용한 이차 초미세유기먼지의 최근 연구 동향)

  • Lim, Yong Bin;Lee, Seung-Bok;Kim, Hwajin;Kim, Jin Young;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.131-157
    • /
    • 2016
  • A smog chamber has been an effective tool to study air quality, particularly secondary organic aerosol (SOA), which is typically formed by atmospheric oxidation of volatile organic compounds (VOCs). In controlled environments, smog chamber studies have validated atmospheric oxidation by identifying, quantifying and monitoring products with state-of-art instruments (e.g., aerosol mass spectrometer, scanning mobility particle sizer) and provided chemical insights of SOA formation by elucidating reaction mechanisms. This paper reviews types of smog chambers and the current state of smog chamber studies that have accomplished to find pathways of SOA formation, focusing on gas-particle partitioning of semivolatile products of VOC oxidation, heterogeneous reactions on aerosol surface, and aqueous chemistry in aerosol waters (e.g., cloud/fog droplets and wet aerosols). For future chamber studies, then, this paper discusses potential formation pathways of fine particles that East Asia countries (e.g., Korea and China) currently suffer from due to massive formation that gives rise to fatal health problems.

Synthesis Strategy for Electrodes and Metal-Organic Frameworks based on Metal Nanoparticle using Flashlight (플래시라이트를 이용한 금속나노입자 기반 전극 및 금속유기골격체 합성 전략)

  • Yim, Changyong;Baek, Saeyeon;Park, Soyeon;Kim, Hamin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.591-595
    • /
    • 2020
  • Intensive pulsed light (IPL) technique enables energy to be transferred to a target substance in a short time per millisecond at room temperature under an ambient atmosphere. Due to the growing interest in flashlights with excellent functionality among various technologies, light-sintering research on metal particles using IPL has been carried out representatively. Recently, examples of the application of IPL to various material synthesis have been reported. In the present article, various strategies using IPL including the manufacture of flexible electrodes and the synthesis of metal-organic frameworks were discussed. In particular, the process of improving oxidation resistance and electrical conductivity of electrodes, and also the metal-organic framework synthesis from metal surface were explained in detail. We envision that the review article can be of great help to researchers who investigate electrode manufacturing and material synthesis using IPL.

Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

  • Xu, Cheng-Hua;Jin, Tai-Huan;Jhung, Sung-Hwa;Hwang, Jin-Soo;Chang, Jong-San;Qiu, Fa-Li;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.681-686
    • /
    • 2004
  • Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase $TiCl_4$, was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of $TiCl_4$with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 $^{\circ}C$ or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with $TiCl_4$was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis.

Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst

  • Jung, Tae-Sung;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.449-453
    • /
    • 2009
  • A mesoporous assembly of layered titanate with well-dispersed Pt cocatalysts has been synthesized via a restacking of exfoliated titanate nanosheets and a simultaneous adsorption of Pt nanoparticles. According to powder X-ray diffraction analysis, the obtained mesoporous assembly shows amorphous structure corresponding to the disordered stacking of layered titanate crystallites. Field emission-scanning electron microscopy and $N_2$ adsorption-desorption isotherm measurement clearly demonstrate the formation of mesoporous structure with expanded surface area due to the house-of-cards type stacking of the titanate crystallites. From high resolution-transmission electron microscopy and elemental mapping analyses, it is found that Pt nanoparticles with the size of ~2.5 nm are homogeneously dispersed in the mesoporous assembly of layered titanate. In comparison with the protonated titanate, the present mesoporous assembly of layered titanate exhibits better photocatalytic activity for the photodegradation of organic molecules. This finding underscores that the restacking of exfoliated nanosheets is quite useful not only in creating mesoporous structure but also in improving the photocatalytic activity of titanium oxide.

Characteristics of Conversion Coating of AZ31 Magnesium Alloy Formed in Chromium-Free Cerium-Based Solution (크롬 프리 세륨 용액에 의한 AZ31 마그네슘 합금의 화성 피막에 대한 특성 평가)

  • Kim, Myung Hwan;Lee, Dong Uk;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • A chromium-free Ce-based conversion coating formed by immersion in a solution containing cerium chloride and nitric acid on AZ31 magnesium alloy has been studied. The effects of acid pickling on the morphology and the corrosion resistance of the cerium conversion coating were investigated. The corrosion resistance of the conversion coating prepared on AZ31 Mg alloy after organic acid pickling was better than that of inorganic acid pickling. The morphology of the conversion-coated layer was observed using optical microscope and SEM. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.0 to $1.1{\mu}m$. The main elements of the conversion coating of AZ31 Mg alloy are Mg, O, Al, Ce and Zn by EDS analysis. The electrochemical polarization results showed that the Ce-based conversion coating could reduce the corrosion activity of the AZ31 Mg alloy substrates in the presence of chloride ions.

${\gamma}-Pyrone$ Derivatives, Kojic Acid Methyl Ethers from a Marine-Derived Fungus Altenaria sp.

  • Li, Xifeng;Jeong, Jee-Hean;Lee, Kang-Tae;Rho, Jung-Rae;Choi, Hong-Dae;Kang, Jung-Sook;Son, Byeng-Wha
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.532-534
    • /
    • 2003
  • Kojic acid dimethyl ether (1), and the known kojic acid mono methyl ether (2), kojic acid (3) and phomaligol A (4) have been isolated from the organic extract of the broth of the marine-derived fungus Altenaria sp. collected from the surface of the marine green alga Ulva pertusa. The structures were assigned on the basis of comprehensive spectroscopic analyses. Each isolate was tested for its tyrosinase inhibitory activity. Kojic acid (3) was found to have significant tyrosinase inhibitory activity, but compounds 1, 2, and 4 were found to be inactive.