Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.1.28

Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2  

Naseri, Maryam (Department of Chemistry, Alzahra University)
Fotouhi, Lida (Department of Chemistry, Alzahra University)
Ehsani, Ali (Department of Chemistry, Faculty of Science, University of Qom)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.1, 2018 , pp. 28-36 More about this Journal
Abstract
Metal-organic frameworks have recently been considered very promising modifiers in electrochemical analysis due to their unique characteristics among which tunable pore sizes, crystalline ordered structures, large surface areas and chemical tenability are worth noting. In the present research, $Cu(btec)_{0.5}DMF$ was electrodeposited on the surface of glassy carbon electrode at room temperature under cathodic potential and was initially used as the active materials for the detection of $H_2O_2$. The cyclic voltammogram of $Cu(btec)_{0.5}DMF$ modified GC electrode shows distinct redox peaks potentials at +0.002 and +0.212 V in 0.1 M phosphate buffer solution (pH 6.5) corresponding to $Cu^{(II)}/Cu^{(I)}$ in $Cu(btec)_{0.5}DMF$. Acting as the electrode materials of a non-enzymatic $H_2O_2$ biosensor, the $Cu(btec)_{0.5}DMF$ brings about a promising electrocatalytic performance. The high electrocatalytic activity of the $Cu(btec)_{0.5}DMF$ modified GC electrode is demonstrated by the amperometric response towards $H_2O_2$ reduction with a wide linear range from $5{\mu}M$ to $8000{\mu}M$, a low detection limit of $0.865{\mu}M$, good stability and high selectivity at an applied potential of -0.2 V, which was higher than some $H_2O_2$ biosensors.
Keywords
MOF; Electrochemical; Biosensor; Amperometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Dong, J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu and F. Xiao, Anal. Chim. Acta, 2015, 853, 200-206.   DOI
2 A. Uzunoglu, A.D. Scherbarth and L.A. Stanciu, Sens. Actuators B, 2015, 220, 968-976.   DOI
3 Y. Wang, H. Ge, Y. Wu, G. Ye, H. Chen and X. Hu, Talanta, 2014, 129, 100-105.   DOI
4 M.Q. Wang, Y. Zhang, S.J. Bao, Y.N. Yu and C. Ye, Electrochim. Acta, 2016, 190, 365-370.   DOI
5 M. Naseri, L. Fotouhi and A. Ehsani, J. Colloid Interface Sci., 2016, 484, 314-319.   DOI
6 P.K. Vabbina, A. Kaushik, N. Pokhrel, S. Bhansali and N. Pala, Biosens. Bioelectron., 2015, 63, 124-130.   DOI
7 R.S. Kumar, S.S. Kumar and M.A. Kulandainathan, Electrochem. Commun., 2012, 25, 70-73.   DOI
8 E. Lavion, J. Electroanal. Chem., 1979, 101, 19.   DOI
9 D.M. Fernandes, C.M.A. Brett and A.M.V. Cavaleiro, J. Solid State Electrochem., 2011, 15(4), 811-819.   DOI
10 D. Zhang, J. Zhang, R. Zhang, H. Shi, Y. Guo, X. Guo, S. Li and B. Yuan, Talanta, 2015, 144, 1176-1181.   DOI
11 Y. Wang, Y. Wu, J. Xie and X. Hu, Sens. Actuators B Chem., 2013, 177, 1161-1166.   DOI
12 L. Yang, C. Xu, W. Ye and W. Liu, Sens. Actuators B, 2015, 215, 489-496.   DOI
13 E. Zhou, Y. Zhang, Y. Li and X. He, Electroanalysis, 2014, 26, 2526-2533.   DOI
14 Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li and L. Guo, Chem. Commun., 2013, 49(61), 6885-6887.   DOI
15 J. Yang, H. Ye, F. Zhao and B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8(31), 20407-20414.   DOI
16 C. Zhang, M. Wang, L. Liu and X. Yang, Electrochem. Commun., 2013, 33, 131-134.   DOI
17 Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang and Z. Lin, ACS Appl. Mater. Interfaces, 2016, 8(47), 32477-32487.   DOI
18 E. Zhou, Y. Zhang, Y. Li and X. He, Electroanal., 2014, 26(11), 2526-2533.   DOI
19 Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang and Z. Lin, ACS Appl. Mater. Interfaces, 2016, 8 (47), 32477-32487.   DOI
20 J. Yang, H. Ye, F. Zhao and B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8(31) 20407-20414.   DOI