Browse > Article
http://dx.doi.org/10.5572/KOSAE.2016.32.2.131

Review of Recent Smog Chamber Studies for Secondary Organic Aerosol  

Lim, Yong Bin (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Lee, Seung-Bok (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Kim, Hwajin (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Kim, Jin Young (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Bae, Gwi-Nam (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.32, no.2, 2016 , pp. 131-157 More about this Journal
Abstract
A smog chamber has been an effective tool to study air quality, particularly secondary organic aerosol (SOA), which is typically formed by atmospheric oxidation of volatile organic compounds (VOCs). In controlled environments, smog chamber studies have validated atmospheric oxidation by identifying, quantifying and monitoring products with state-of-art instruments (e.g., aerosol mass spectrometer, scanning mobility particle sizer) and provided chemical insights of SOA formation by elucidating reaction mechanisms. This paper reviews types of smog chambers and the current state of smog chamber studies that have accomplished to find pathways of SOA formation, focusing on gas-particle partitioning of semivolatile products of VOC oxidation, heterogeneous reactions on aerosol surface, and aqueous chemistry in aerosol waters (e.g., cloud/fog droplets and wet aerosols). For future chamber studies, then, this paper discusses potential formation pathways of fine particles that East Asia countries (e.g., Korea and China) currently suffer from due to massive formation that gives rise to fatal health problems.
Keywords
Smog chamber; Secondary organic aerosols; Volatile organic compounds; Aqueous chemistry;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bae, G.N., J.Y. Park, M.C. Kim, S.B. Lee, K.C. Moon, and Y.P. Kim (2008) Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul, Part. Aerosol Res., 4, 9-10.
2 Becker, K.H. (1996) The European Photoreactor EUPHORE: Design and Technical Development of the European Photoreactor and First Experimental Results: Final Report of the EC-Project: Contract EV5V-CT92-0059: Funding Period, January 1993-December 1995.
3 Benson, S.W. (1965) Effects of resonance and structure on the thermochemistry of organic peroxy radicals and the kinetics of combustion reactions1, J. Am. Chem. Soc., 87, 972-979.   DOI
4 Blando, J.D. and B.J. Turpin (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623-1632.   DOI
5 Boge, O., A. Mutzel, Y. Iinuma, P. Yli-Pirila, A. Kahnt, J. Joutsensaari, and H. Herrmann (2013) Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene, Atmos. Environ., 79, 553-560.   DOI
6 Carlton, A.G., B.J. Turpin, H.J. Lim, K.E. Altieri, and S. Seitzinger (2006) Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, 10.1029/2005gl025374.   DOI
7 Carlvert, J.G., R. Atkinson, K.H. Becker, R.M. Kamens, J.H. Seinfeld, T.J. Wallington, and G. Yarwood (2002) The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press: New York.
8 Carter, W.P.L., D.R. Cocker Iii, D.R. Fitz, I.L. Malkina, K. Bumiller, C.G. Sauer, J.T. Pisano, C. Bufalino, and C. Song (2005) A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation, Atmos. Environ., 39, 7768-7788.   DOI
9 Hodas, N., A.P. Sullivan, K. Skog, F.N. Keutsch, J.L. Collett, S. Decesari, M.C. Facchini, A.G. Carlton, A. Laaksonen, and B.J. Turpin (2014) Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation, Environ. Sci. Technol., 48, 11127-11136.   DOI
10 Hong, Y.D., J.S. Han, J.D. Park, D.W. Jung, B.J. Kong, S.Y. Kim, and D.K. Lee (2001) A Study on the High-Ozone Episode and Photochemical Smog (I), National Instiute of Environmental Research Report 2001-13-605.
11 Huang, R.-J., Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I.E. Haddad, and A.S.H. Prevot (2014) High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218-222.   DOI
12 Hynes, R.G., D.E. Angove, S.M. Saunders, V. Haverd, and M. Azzi (2005) Evaluation of two MCM v3.1 alkene mechanisms using indoor environmental chamber data, Atmos. Environ., 39, 7251-7262.   DOI
13 Im, Y., M. Jang, and R.L. Beardsley (2014) Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions, Atmos. Chem. Phys., 14, 4013-4027.   DOI
14 Ip, H.S.S., X.H.H. Huang, and J.Z. Yu (2009) Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, 10.1029/2008GL036212.   DOI
15 Jang, M. and R.M. Kamens (1999) Newly characterized products and composition of secondary aerosols from the reaction of alpha-pinene with ozone, Atmos. Environ., 33, 459-474.   DOI
16 Kim, H. and S.E. Paulson (2013) Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, ${\alpha}$-pinene and toluene, Atmos. Chem. Phys., 13, 7711-7723.   DOI
17 Kamm, S., O. Mohler, K.H. Naumann, H. Saathoff, and U. Schurath (1999) The heterogeneous reaction of ozone with soot aerosol, Atmos. Environ., 33, 4651-4661.   DOI
18 Kanakidou, M., J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis, E. Vignati, E.G. Stephanou, and J. Wilson (2005) Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123.   DOI
19 Kim, H., B. Barkey, and S.E. Paulson (2010) Real refractive indices of ${\alpha}$- and ${\beta}$-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation, J. Geophys. Res. Atmos., 115, 10.1029/2010JD014549.   DOI
20 Kim, J. (2002) Photochemical Reactions of Real Gas in an Indoor Smog Chamber, M.D. Thesis, Departiment of Environmental Engineering, The University of Seoul.
21 Kim, Y., J.Y. Kim, S.B. Lee, K.C. Moon, and G.N. Bae (2015) Review on the recent $PM_{2.5}$ studies in China, J. Korean Soc. Atmos. Environ., 31, 411-429.   DOI
22 King, S.M., T. Rosenoern, J.E. Shilling, Q. Chen, and S.T. Martin (2009) Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959-2971.   DOI
23 Lim, Y.B. and P.J. Ziemann (2009b) Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of $NO_x$, Environ. Sci. Technol., 43, 2328-2334.   DOI
24 Lim, Y.B. and B.J. Turpin (2015) Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH, Atmos. Chem. Phys., 15, 12867-12877.
25 Lim, Y.B. and P.J. Ziemann (2005) Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of $NO_x$, Environ. Sci. Technol., 39, 9229-9236.   DOI
26 Lim, Y.B. and P.J. Ziemann (2009a) Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of $NO_x$, Aerosol Sci. Technol., 43, 604-619.   DOI
27 Lim, Y.B. and P.J. Ziemann (2009c) Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles, Phys. Chem. Chem. Phys., 11, 8029-8039.   DOI
28 Limbeck, A., M. Kulmala, and H. Puxbaum (2003) Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30, 10.1029/2003GL017738.   DOI
29 Matsunaga, A., K.S. Docherty, Y.B. Lim, and P.J. Ziemann (2009) Composition and yields of secondary organic aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of $NO_x$: Modeling and measurements, Atmos. Environ., 43, 1349-1357.   DOI
30 Presto, A.A., M.A. Miracolo, N.M. Donahue, and A.L. Robinson (2010) Secondary organic aerosol formation from high-$NO_x$ photo-oxidation of low volatility precursors: n-alkanes, Environ. Sci. Technol., 44, 2029-2034.   DOI
31 Roberts, P.T. and S.K. Friedlander (1976) Photochemical aerosol formation. Sulfur dioxide, 1-heptene, and $NO_x$ in ambient air, Environ. Sci. Technol., 10, 573-580.   DOI
32 Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259-1262.   DOI
33 Rohrer, F., B. Bohn, T. Brauers, D. Bruning, F.J. Johnen, A. Wahner, and J. Kleffmann (2005) Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 5, 2189-2201.   DOI
34 Saathoff, H., O. Moehler, U. Schurath, S. Kamm, B. Dippel, and D. Mihelcic (2003) The AIDA soot aerosol characterisation campaign 1999, J. Aerosol Sci., 34, 1277-1296.   DOI
35 Sareen, N., A.G. Carlton, J.D. Surratt, A. Gold, B. Lee, F.D. Lopez-Hilfiker, C. Mohr, J.A. Thornton, Z. Zhang, Y.B. Lim, and B.J. Turpin (2016) Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign, Atmos. Chem. Phys. Discuss., 2016, 1-42.
36 Seinfeld, J.H. and S.N. Pandis (1998) Atmospheric Chemistry and Physics : from Air Pollution to Climate Change. John Wiley, New York.
37 Seinfeld, J.H. and J.F. Pankow (2003) Organic atmospheric particulate material, Annu. Rev. Phys. Chem., 54, 121-140.   DOI
38 Wagner, R., C. Linke, K.-H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath (2009) A review of optical measurements at the aerosol and cloud chamber AIDA, J. Quant. Spectrosc. Radiat. Transfer, 110, 930-949.   DOI
39 Volkamer, R., F.S. Martini, L.T. Molina, D. Salcedo, J.L. Jimenez, and M.J. Molina (2007) A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, Geophys. Res. Lett., 34, 10.1029/2007gl030752.   DOI
40 Volkamer, R., P.J. Ziemann, and M.J. Molina (2009) Secondary Organic Aerosol Formation from Acetylene ($C_2H_2$): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907-1928.
41 Wang, X., T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lu, J. Chen, S. Saunders, and J. Yu (2014) Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation, Atmos. Meas. Tech., 7, 301-313.   DOI
42 Wang, Y., H. Kim, and S.E. Paulson (2011) Hydrogen peroxide generation from ${\alpha}$-and ${\beta}$-pinene and toluene secondary organic aerosols, Atmos. Environ., 45, 3149-3156.   DOI
43 Welz, O., J.D. Savee, D.L. Osborn, S.S. Vasu, C.J. Percival, D.E. Shallcross, and C.A. Taatjes (2012) Direct kinetic measurements of Criegee intermediate (C$H_2O$O) formed by reaction of CH2I with $O_2$, Science, 335, 204-207.   DOI
44 Wu, S., Z. Lu, J. Hao, Z. Zhao, J. Li, H. Takekawa, H. Minoura, and A. Yasuda (2007) Construction and characterization of an atmospheric simulation smog chamber, Adv. Atmos. Sci., 24, 250-258.   DOI
45 Yu, J.Z., D.R. Cocker, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld (1999) Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products, J. Atmos. Chem., 34, 207-258.   DOI
46 Atkinson, R. (2007) Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method, Atmos. Environ., 41, 8468-8485.   DOI
47 Aiken, A.C., P.F. Decarlo, J.H. Kroll, D.R. Worsnop, J.A. Huffman, K.S. Docherty, I.M. Ulbrich, C. Mohr, J.R. Kimmel, D. Sueper, Y. Sun, Q. Zhang, A. Trimborn, M. Northway, P.J. Ziemann, M.R. Canagaratna, T.B. Onasch, M.R. Alfarra, A.S.H. Prevot, J. Dommen, J. Duplissy, A. Metzger, U. Baltensperger, and J.L. Jimenez (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478-4485.   DOI
48 Akimoto, H., M. Hoshino, G. Inoue, F. Sakamaki, N. Washida, and M. Okuda (1979) Design and characterization of the evacuable and bakable photochemical smog chamber, Environ. Sci. Technol., 13, 471-475.   DOI
49 Arey, J., S.M. Aschmann, E.S.C. Kwok, and R. Atkinson (2001) Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the $NO_x$-air photooxidations of $C_5-C_8$ n-alkanes, J. Phys. Chem. A, 105, 1020-1027.   DOI
50 Atkinson, R. and J. Arey (2003) Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605-4638.   DOI
51 Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, and J. Troe (2006) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055.   DOI
52 Badali, K.M., S. Zhou, D. Aljawhary, M. Antinolo, W.J. Chen, A. Lok, E. Mungall, J.P.S. Wong, R. Zhao, and J.P.D. Abbatt (2015) Formation of hydroxyl radicals from photolysis of secondary organic aerosol material, Atmos. Chem. Phys., 15, 7831-7840.   DOI
53 Cocker, D.R., S.L. Clegg, R.C. Flagan, and J.H. Seinfeld (2001a) The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: alphapinene/ozone system, Atmos. Environ., 35, 6049-6072.   DOI
54 Chattopadhyay, S., H.J. Tobias, and P.J. Ziemann (2001) A method for measuring vapor pressures of low-volatility organic aerosol compounds using a thermal desorption particle beam mass spectrometer, Anal. Chem., 73, 3797-3803.   DOI
55 Chen, S. (2014) China to build 'world's largest' smog chamber to solve pollution puzzle, South China Morning Post, Retrived from http://www.scmp.com/news/ china/article/1436336/china-build-worlds-largestsmog-chamber-solve-pollution-puzzle?page=all.
56 Claeys, M., B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M.O. Andreae, P. Artaxo, and W. Maenhaut (2004) Formation of secondary organic aerosols through photooxidation of isoprene, Science, 303, 1173-1176.   DOI
57 Cocker, D.R., R.C. Flagan, and J.H. Seinfeld (2001b) State-ofthe-art chamber facility for studying atmospheric aerosol chemistry, Environ. Sci. Technol., 35, 2594-2601.   DOI
58 Docherty, K.S., W. Wu, Y.B. Lim, and P.J. Ziemann (2005) Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O-3, Environ. Sci. Technol., 39, 4049-4059.   DOI
59 Ehn, M., J.A. Thornton, E. Kleist, M. Sipila, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I.H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurten, L.B. Nielsen, S. Jorgensen, H.G. Kjaergaard, M. Canagaratna, M. Dal Maso, T. Berndt, T. Petaja, A. Wahner, V.M. Kerminen, M. Kulmala, D.R. Worsnop, J. Wildt, and T.F. Mentel (2014) A large source of lowvolatility secondary organic aerosol, Nature, 506, 476-479.   DOI
60 El-Sayed, M.M.H., Y. Wang, and C.J. Hennigan (2015) Direct atmospheric evidence for the irreversible formation of aqueous secondary organic aerosol, Geophys. Res. Lett., 42, 5577-5586.   DOI
61 Ervens, B., A.G. Carlton, B.J. Turpin, K.E. Altieri, S.M. Kreidenweis, and G. Feingold (2008) Secondary organic aerosol yields from cloud-processing of isoprene oxidation products, Geophys. Res. Lett., 35, 10.1029/2007gl031828.   DOI
62 Ervens, B. and R. Volkamer (2010) Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219-8244.   DOI
63 Finlayson-Pitts, B.J. and J.N. Pitts Jr (1999) Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic press.
64 Forstner, H.J.L., R.C. Flagan, and J.H. Seinfeld (1997) Molecular speciation of secondary organic aerosol from photooxidation of the higher alkenes: 1-octene and 1-decene, Atmos. Environ., 31, 1953-1964.   DOI
65 Forziati, A.F., D.L. Camin, and F.D. Rossini (1950) Density, refractive index, boiling point, and vapor pressure of 8 monoolefin (1-alkene), 6 pentadiene, and 2 cyclomonoolefin hydrocarbons, J. Res. Natl. Stand., 45, 406-410.   DOI
66 Fratzke, A.R. and P.J. Reilly (1986) Thermodynamic and kinetic analysis of the dimerization of aqueous glyoxal, Int. J. Chem. Kinet., 18, 775-789.   DOI
67 Fry, J.L., D.C. Draper, K.C. Barsanti, J.N. Smith, J. Ortega, P.M. Winkler, M.J. Lawler, S.S. Brown, P.M. Edwards, R.C. Cohen, and L. Lee (2014) Secondary organic aerosol formation and organic nitrate yield from $NO_3$ oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 48, 11944-11953.   DOI
68 Gardner, S. (2014) LA Smog: the battle against air pollution, Marketplace, Retrieved from http://www.marketplace.org/topics/sustainability/we-used-be-china/la-smog-battle-against-air-pollution.
69 Fu, T.-M., D.J. Jacob, F. Wittrock, J.P. Burrows, M. Vrekoussis, and D.K. Henze (2008) Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res. Atmos., 113, 10.1029/2007jd009505.   DOI
70 Galloway, M.M., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, R.C. Flagan, J.H. Seinfeld, and F.N. Keutsch (2009) Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331-3345.   DOI
71 Geiger, H., J. Kleffmann, and P. Wiesen (2002) Smog chamber studies on the influence of diesel exhaust on photosmog formation, Atmos. Environ., 36, 1737-1747.   DOI
72 Glowacki, D.R., J. Lockhart, M.A. Blitz, S.J. Klippenstein, M.J. Pilling, S.H. Robertson, and P.W. Seakins (2012) Interception of Excited Vibrational Quantum States by $O_2$ in Atmospheric Association Reactions, Science, 337, 1066-1069.   DOI
73 Goldstein, A.H. and I.E. Galbally (2007) Known and unexplored organic constituents in the earth's atmosphere, Environ. Sci. Technol., 41, 1514-1521.   DOI
74 Gong, H.M., A. Matsunaga, and P.J. Ziemann (2005) Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with $NO_3$ radicals, J. Phys. Chem. A, 109, 4312-4324.   DOI
75 Griffin, R.J., D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res. Atmos., 104, 3555-3567.   DOI
76 Haagen-Smit, A.J., C.E. Bradley, and M.M. Fox (1953) Ozone formation in photochemical oxidation of organic substances, Ind. Eng. Chem., 45, 2086-2089.   DOI
77 Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman (1995) A global model of natural volatile organic compound emissions, J. Geophys. Res. Atmos., 100, 8873-8892.   DOI
78 Haagen-Smit, A.J. (1952) Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44, 1342-1346.   DOI
79 Haagen-Smit, A.J. (1963) Photochemistry and smog, J. Air Pollut. Control Assoc., 13, 444-454.   DOI
80 Hatakeyama, S. and H. Akimoto (1994) Reactions of criegee intermediates in the gas phase, Res. Chem. Intermed., 20, 503-524.   DOI
81 Hawkins, J.E. and G.T. Armstrong (1954) Physical and thermodynamic properties of terpenes. III. The Vapor pressures of ${\alpha}$-pinene and ${\beta}$-pinene, J. Am. Chem. Soc., 76, 3756-3758.   DOI
82 Hennigan, C.J., M.H. Bergin, A.G. Russell, A. Nenes, and R.J. Weber (2009) Gas/particle partitioning of watersoluble organic aerosol in Atlanta, Atmos. Chem. Phys., 9, 3613-3628.   DOI
83 Hess, G.D., F. Carnovale, M.E. Cope, and G.M. Johnson (1992) The evaluation of some photochemical smog reaction mechanisms - I. Temperature and initial composition effects, Atmos. Environ., 26A, 625-641.
84 Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger (2004) Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659-1662.   DOI
85 Jang, M.S., N.M. Czoschke, S. Lee, and R.M. Kamens (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814-817.   DOI
86 Jang, M.S. and R.M. Kamens (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of $NO_x$ and 1-propene, Environ. Sci. Technol., 35, 3626-3639.   DOI
87 Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009) Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529.   DOI
88 Kalberer, M., J. Yu, D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (2000) Aerosol formation in the cyclohexeneozone system, Environ. Sci. Technol., 34, 4894-4901.   DOI
89 Kamens, R.M., M.W. Gery, H.E. Jeffries, M. Jackson, and E.I. Cole (1982) Ozone-Isoprene Reactions - Product Formation and Aerosol Potential, Int. J. Chem. Kinet., 14, 955-975.   DOI
90 Kleindienst, T.E., M. Jaoui, M. Lewandowski, J.H. Offenberg, C.W. Lewis, P.V. Bhave, and E.O. Edney (2007a) Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location, Atmos. Environ., 41, 8288-8300.   DOI
91 Kleindienst, T.E., M. Lewandowski, J.H. Offenberg, M. Jaoui, and E.O. Edney (2007b) Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol, Geophys. Res. Lett., 34, 10.1029/2006gl027485.   DOI
92 Kroll, J.H., N.M. Donahue, V.J. Cee, K.L. Demerjian, and J.G. Anderson (2002) Gas-phase ozonolysis of alkenes: Formation of OH from anti carbonyl oxides, J. Am. Chem. Soc., 124, 8518-8519.   DOI
93 Kroll, J.H., N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld (2006) Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40, 1869-1877.   DOI
94 Kroll, J.H., N.L. Ng, S.M. Murphy, V. Varutbangkul, R.C. Flagan, and J.H. Seinfeld (2005) Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res. Atmos., 110, 10.1029/2005JD006004.   DOI
95 Kulmala, M. (2015) Atmospheric chemistry: China's choking cocktail, Nature, 526, 497-499.   DOI
96 Kwok, E.S.C. and R. Atkinson (1995) Estimation of hydroxyl radical reaction-rate constants for gas-phase organiccompounds using a structure-reactivity relationship -an update, Atmos. Environ., 29, 1685-1695.   DOI
97 Lai, C.C., B.J. Finlayson-Pitts, and W.V. Willis (1990) Formation of secondary ozonides from the reaction of an unsaturated phosphatidylcholine with ozone, Chem. Res. Toxicol., 3, 517-523.   DOI
98 Ng, N.L., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, J.H. Kroll, A.J. Kwan, D.C. McCabe, P.O. Wennberg, A. Sorooshian, S.M. Murphy, N.F. Dalleska, R.C. Flagan, and J.H. Seinfeld (2007a) Effect of $NO_x$ level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159-5174.   DOI
99 Mauldin Iii, R.L., T. Berndt, M. Sipila, P. Paasonen, T. Petaja, S. Kim, T. Kurten, F. Stratmann, V.M. Kerminen, and M. Kulmala (2012) A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488, 193-196.   DOI
100 Neeb, P., O. Horie, and G.K. Moortgat (1996) Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds, Int. J. Chem. Kinet., 28, 721-730.   DOI
101 Ng, N.L., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, J.H. Kroll, A.J. Kwan, D.C. McCabe, P.O. Wennberg, A. Sorooshian, S.M. Murphy, N.F. Dalleska, R.C. Flagan, and J.H. Seinfeld (2007b) Effect of $NO_x$ level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159-5174.   DOI
102 Ng, N.L., J.H. Kroll, A.W.H. Chan, P.S. Chhabra, R.C. Flagan, and J.H. Seinfeld (2007c) Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909-3922.   DOI
103 Ng, N.L., A.J. Kwan, J.D. Surratt, A.W.H. Chan, P.S. Chhabra, A. Sorooshian, H.O.T. Pye, J.D. Crounse, P.O. Wennberg, R.C. Flagan, and J.H. Seinfeld (2008a) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals ($NO_3$), Atmos. Chem. Phys., 8, 4117-4140.
104 Ng, N.L., A.J. Kwan, J.D. Surratt, A.W.H. Chan, P.S. Chhabra, A. Sorooshian, H.O.T. Pye, J.D. Crounse, P.O. Wennberg, R.C. Flagan, and J.H. Seinfeld (2008b) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals ($NO_3$), Atmos. Chem. Phys., 8, 4117-4140.
105 Surratt, J.D., A.W.H. Chan, N.C. Eddingsaas, M.N. Chan, C.L. Loza, A.J. Kwan, S.P. Hersey, R.C. Flagan, P.O. Wennberg, and J.H. Seinfeld (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proc. Natl. Acad. Sci. USA, 107, 6640-6645.   DOI
106 Shrivastava, M.K., E.M. Lipsky, C.O. Stanier, and A.L. Robinson (2006) Modeling semivolatile organic aerosol mass emissions from combustion systems, Environ. Sci. Technol., 40, 2671-2677.   DOI
107 Sorooshian, A., S.M. Murphy, S. Hersey, R. Bahreini, H. Jonsson, R.C. Flagan, and J.H. Seinfeld (2010) Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region, Geophys. Res. Lett., 37, 10.1029/2010GL044951.   DOI
108 Spittler, M., I. Barnes, I. Bejan, K. Brockmann, T. Benter, and K. Wirtz (2006) Reactions of $NO_3$ radicals with limonene and ${\alpha}$-pinene: Product and SOA formation, Atmos. Environ. 40, 116-127.   DOI
109 Taatjes, C.A., O. Welz, A.J. Eskola, J.D. Savee, A.M. Scheer, D.E. Shallcross, B. Rotavera, E.P.F. Lee, J.M. Dyke, D.K.W. Mok, D.L. Osborn, and C.J. Percival (2013) Direct measurements of conformer-dependent reactivity of the Criegee intermediate $CH_3CHOO$, Science, 340, 177-180.   DOI
110 Takekawa, H., H. Minoura, and S. Yamazaki (2003) Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons, Atmos. Environ., 37, 3413-3424.   DOI
111 Tan, Y., A.G. Carlton, S.P. Seitzinger, and B.J. Turpin (2010) SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmos. Environ., 44, 5218-5226.   DOI
112 Li, H., Z. Chen, L. Huang, and D. Huang (2016) Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol, Atmos. Chem. Phys., 16, 1837-1848.   DOI
113 Lee, S.-B., G.-N. Bae, Y.-M. Lee, and K.-C. Moon (2013) Wall contamination of teflon bags used as a photochemical reaction chamber of ambient air, Part. Aerosol Res., 9, 149-161.   DOI
114 Lee, S.-B., G.-N. Bae, Y.-M. Lee, K.-C. Moon, and M. Choi (2010) Correlation between light intensity and ozone formation for photochemical smog in urban air of Seoul, Aerosol Air Qual. Res., 10, 540-549.   DOI
115 Lee, S., M. Jang, and R.M. Kamens (2004) SOA formation from the photooxidation of ${\alpha}$-pinene in the presence of freshly emitted diesel soot exhaust, Atmos. Environ., 38, 2597-2605.   DOI
116 Li, H., X. Wang, W. Zhang, Y. Zhang, F. Bi, F. Xia, H. Li, and L. Meng (2014) Progress and prospective of atmospheric photochemical smog chamber simulation study in China, 4th Sino-French Joint Workshop on Atmospheric Environment, December 10th-13th, Lyon, France.
117 Liggio, J., S.-M. Li, and R. McLaren (2005) Reactive uptake of glyoxal by particulate matter, J. Geophys. Res. Atmos., 110, 10.1029/2004JD005113.   DOI
118 Lim, Y.B., Y. Tan, M.J. Perri, S.P. Seitzinger, and B.J. Turpin (2010) Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521-10539.   DOI
119 Lim, Y.B., Y. Tan, and B.J. Turpin (2013) Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651-8667.   DOI
120 Nishino, N., J. Arey, and R. Atkinson (2010) Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of $NO_2$ concentration, J. Phys. Chem. A, 114, 10140-10147.   DOI
121 Odum, J.R., T. Hoffmann, F. Bowman, D. Collins, R.C. Flagan, and J.H. Seinfeld (1996) Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585.   DOI
122 Odum, J.R., T.P.W. Jungkamp, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld (1997) The atmospheric aerosol-forming potential of whole gasoline vapor, Science, 276, 96-99.   DOI
123 Paulot, F., J.D. Crounse, H.G. Kjaergaard, A. Kurten, J.M. St Clair, J.H. Seinfeld, and P.O. Wennberg (2009) Unexpected epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730-733.   DOI
124 Paulsen, D., J. Dommen, M. Kalberer, A.S.H. Prevot, R. Richter, M. Sax, M. Steinbacher, E. Weingartner, and U. Baltensperger (2005) Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene-$NO_x$-$H_2O$ in a new reaction chamber for atmospheric chemistry and physics, Environ. Sci. Technol., 39, 2668-2678.   DOI
125 Perri, M.J., Y.B. Lim, S.P. Seitzinger, and B.J. Turpin (2010) Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies, Atmos. Environ., 44, 2658-2664.   DOI
126 Pitts, J.N. and E.R. Stephens (1978) The pioneers, J. Air Pollut. Control Assoc., 28, 516-517.   DOI
127 Presto, A.A., K.E. Huff Hartz, and N.M. Donahue (2005) Secondary organic aerosol production from terpene ozonolysis. 1. Effect of UV radiation, Environ. Sci. Technol., 39, 7036-7045.   DOI
128 Tobias, H.J., P.M. Kooiman, K.S. Docherty, and P.J. Ziemann (2000) Real-time chemical analysis of organic aerosols using a thermal desorption particle beam mass spectrometer, Aerosol Sci. Technol., 33, 170-190.   DOI
129 Tan, Y., Y.B. Lim, K.E. Altieri, S.P. Seitzinger, and B.J. Turpin (2012) Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12, 801-813.   DOI
130 Tan, Y., M.J. Perri, S.P. Seitzinger, and B.J. Turpin (2009) Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol, Environ. Sci. Technol., 43, 8105-8112.   DOI
131 Tobias, H.J. and P.J. Ziemann (2000) Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and $O_3$ in the presence of alcohols and carboxylic acids, Environ. Sci. Technol., 34, 2105-2115.   DOI
132 Tong, H., A.M. Arangio, P.S.J. Lakey, T. Berkemeier, F. Liu, C.J. Kampf, W.H. Brune, U. Poschl, and M. Shiraiwa (2016) Hydroxyl radicals from secondary organic aerosol decomposition in water, Atmos. Chem. Phys., 16, 1761-1771.   DOI
133 Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34, 2983-3013.   DOI
134 Virtanen, A., J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirila, J. Leskinen, J.M. Makela, J.K. Holopainen, U. Poschl, M. Kulmala, D.R. Worsnop, and A. Laaksonen (2010) An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824-827.   DOI
135 Ziemann, P.J. (2002) Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of $O_3$ with cyclohexene and homologous compounds, J. Phys. Chem. A, 106, 4390-4402.
136 Zhang, Q., J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe, I. Ulbrich, M.R. Alfarra, A. Takami, A.M. Middlebrook, Y.L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P.F. DeCarlo, D. Salcedo, T. Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and D.R. Worsnop (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyinfluenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, 10.1029/2007gl029979.   DOI
137 Zhou, X. and K. Mopper (1990) Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange, Environ. Sci. Technol., 24, 1864-1869.   DOI