• 제목/요약/키워드: Surface nitridation

검색결과 47건 처리시간 0.017초

Air 분위기에서 규소성형체의 질화반응 (Nitridation of Silicon Powder Compacts in Air)

  • 최석홍;안영필
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.380-384
    • /
    • 1988
  • This investigation includes nitridation phenomena of silicon powder compacts in air. Nitridation reaction condition has been provided with using silicon nitride bed and active carbon additive. Reaction products are Oxynitride, $\alpha$-Si3N4, and $\beta$-Si3N4, Oxynitride(Si2N2O) phase in formed at outer surface layer ofsilicon powder compacts. $\alpha$-Si3N4, and $\beta$-Si3N4 are formed at inner region of powder compacts. Microstructural observation indicates that nitridation mechanism in this work is the same as conventional nitridation mechanism nitrogen gas.

  • PDF

VLSI를 위한 플라즈마 열적 질산화막의 형성 (Plasma Enhanced Thermal Nitridation of $SiO_2$ for VLSI)

  • 이재성;이용현;최시영;이덕동
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1699-1705
    • /
    • 1989
  • Nitridation of about 300\ulcornerSiO2 filmss thermally grown on Si was performed in NH3 plasm ambient (0.2-2 torr) at 900\ulcornerC-1100\ulcorner for 15-20 minutes. The peoperties of those films have been investigated by analyzing the AES and the SIMS data, and the results of the I-V and the C-V measurements. At the plasma ambient of less than 1.5 torr pressure, etching of the films have been shown. Above the 1.5 torr pressure, however, SiO2 films were nitrided as SiIxNy. Plasma thermal nitridation of SiO2 by addition of small amount (6%) of CF4 to the NH3 showed higher pile-up N concentration in the surface region of SiOxNy film. The higher the nitridation temperature is and the longer the nitridation time is the larger the dielectric constant is. The plasma thermal nitridation of silicon dioxide on silicon causes the flat-band voltage shift based on the formation of the positive charge. The conduction mechanism for SiOxNy films could be elucidated by Fowler-Nordheim tnneling model. By SIMS analysis, surface of the film nitrided in plasma process has less contamination than that of the film nitrided in open-tube process.

  • PDF

바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성 (Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide)

  • 윤경희;신채호
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.620-629
    • /
    • 2022
  • 가열 속도, 몰 공간속도, 질화반응온도 등 다양한 실험 조건을 변화하며 바나디움 산화물과 암모니아와의 승온 질화반응을 통하여 바나디움 산화질화물을 제조하여 특성분석을 수행하였으며 제조된 바나디움 산화질화물 상에서 암모니아 분해반응의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), 수소 승온환원(H2-TPR), 산소 존재 하 승온산화 (TPO), 암모니아 탈착 (NH3-TPD), 투과전자현미경(TEM) 분석을 수행하였다. 340 ℃에서 5 m2 g-1의 낮은 비표면적을 갖는 V2O5의 환원에 의하여 V2O3 으로의 변환은 미세 기공 형성에 의해 115 m2 g-1 높은 비표면적 값을 보여주었으며 그 이상의 질화반응 온도가 증가함에 따라 소결현상에 의해 지속적인 비표면적의 감소를 초래하였다. 비표면적에 가장 큰 영향을 미치는 질화반응 변수는 반응온도였으며, 단일 상의 VNxOy의 x + y 값은 질화반응온도가 증가함에 따라 1.5에서 1.0으로 근접하였으며 680 ℃의 높은 반응온도에서 입방 격자상수 a는 VN 값에 근접하였다. 본 실험 조건 중에 질화반응온도가 가장 높았던 680 ℃에서 암모니아 전환율은 93%로 나타났으며 비활성화는 관찰되지 않았다.

HVPE 법을 활용한 GaN 성장 시 질화처리에 관한 연구 (A study on the nitridation of GaN crystal growth by HVPE method)

  • 이승훈;이주형;이희애;오누리;이성철;강효상;이성국;양재득;박재화
    • 한국결정성장학회지
    • /
    • 제29권4호
    • /
    • pp.149-153
    • /
    • 2019
  • HVPE는 GaN 단결정의 제조 방법 중 하나로 빠른 성장 속도가 장점인 상업적으로 널리 사용되는 성장 방법이다. HVPE 법에 의한 GaN 단결정 성장은 여러 공정으로 이루어지며, 특히 GaN 성장 전 기판의 질화 처리는 성장되는 GaN 단결정 품질에 상당한 영향을 미친다. 본 연구에서는 사파이어 기판 위에 GaN 단결정 성장 시 기판의 질화처리가 성장되는 GaN 단결정 품질에 미치는 영향을 알아보고자 하였다. 질화 처리를 제외한 다른 성장 조건은 동일하게 하였고 질화처리 시 기판에 공급되는 가스 유량을 다양하게 변화시킨 후 GaN 박막을 성장시키고, 성장된 GaN의 표면 특성평가를 통하여, HVPE 법에서의 질화처리 효과를 고찰하여 보고자 하였다.

급속 열처리에 의한 $SiO_2$ 의 질화 (Rapid Thermal Nitridation of $SiO_2$)

  • 이용현;왕진석
    • 대한전자공학회논문지
    • /
    • 제27권5호
    • /
    • pp.709-715
    • /
    • 1990
  • SiO2 films were nitrided by tungsten-halogen heated rapid thermal annealing in ammonia gas at temperatures of 900-1100\ulcorner for 15-180sec. The nitroxide films were analyzed using Auger electron spectroscopy. MIS caapcitors were fabricated using these films as gate insulators. I-V and C-V characteristics of MIS capacitors were investigated. The AES depth profiles of nitroxide film show that the nitrogen rich layer is, at the early stage of nitridation, formed at the surface of nitroxide film and near the interface between nitroxide and silicon. Nitridation of SiO2 makes the film have a larger effective average refractive index. The thermal nitridation of SiO2 on silicon causes the flatband voltage shift due to the change of the fixed charge density. It is found that the dominant conduction mechanism in nitroxide is Fowler-Nordheim tunneling. Rapid thermal nitridation of 200\ulcornerSiO2 on silicon results in an improvement in the dielectric breakdown electric field.

  • PDF

Al-AlN계 질화반응에 대한 표면개질 및 첨가제의 영향 (Effect of Surface Modification and Additives on Nitridation of Al-AlN System)

  • 유재영;김용남;황명익;박정현
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.249-254
    • /
    • 2003
  • AI, AIN 및 질화반응 촉진을 위한 첨가제로서 Li$_2$CO$_3$, Y$_2$O$_3$, CaCO$_3$를 혼합한 후 성형체를 제조하여 질소 분위기에서 열처리하였고, 용매 및 첨가제의 종류와 질화온도가 AI-AIN계의 질화반응에 미치는 영향에 대하여 고찰하였다. 1.0wt%의 olcic acid.를 첨가한 ethanol을 혼합용매로 사용한 경우 AI과 AIN 입자의 표면개질 효과를 질화반응시 산화물 생성을 최소화시킬 수 있었다. 그리고 AI-AIN계에 Li$_2$CO$_3$ 또는 CaCO$_3$를 첨가한 경우Y$_2$O$_3$를 첨가한 경우에 비하여 질화 열처리시 생성되는 산화물의 생성을 크게 억제시킬 수 있었다.

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

규소의 질화반응에 있어 산화마그네시움의 효과 (Effect of Magnesium Oxide on the Nitridation of Silicon Compact.)

  • 박금철;최상원
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.305-314
    • /
    • 1983
  • In order to enhance the rate of th nitridation and to give the high density of reaction-bonded silicon nitride MgO powder as nitriding aid were added to silicon powders and the mixture was pressed isostatically into compacts which were nitrided in the furnace of 1, 35$0^{\circ}C$ where 95% $N_2$-5% $H_2$ gases were flowing. As the other nitriding aid $Mg(NO_3)_2 6H_2O$ was selected, A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$. Magnesium oxide-coated silicon powders were formed into compacts prior to the nitridation on the same condition as the former. Magnesium nitrate (MgO, produced from the decomposition of magnesium nitrate) was more effective for the formation of the $\beta$-phase in the initial stage of the nitridation probably due to the easy formation of $MgO-SiO_2$-metal oxide eutectic melt. It has been confirmed that forsterite was formed as a result of the reaction between MgO and $SiO_2$ film of silicon surface. It was considered that MgO produced from magnesium nitrate may be finer more reactive and more uniformly distributed on the surface of silicon particles than original MgO. The higher the forming pressure was the more the $\beta$-phase was formed.

  • PDF

Surface Nitridation of Nano-sized Anatase TiO2 using Urea and Thiourea for Enhanced Electrochemical Performance in Lithium-ion Batteries

  • Wonyoung Song;Oh B. Chae;Ji Heon Ryu
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.512-520
    • /
    • 2024
  • Given the critical importance of safety in lithium-ion batteries (LIBs), titanium dioxide (TiO2) is widely regarded as a reliable material for the negative electrode. Anatase TiO2 is a safe negative electrode material in LIBs, attributed to its high redox potential (1.5-1.8 V vs. Li/Li+), which exceeds that of commercially available graphite, alleviating the risk of lithium plating. In addition, TiO2 has gained considerable attention as a cost-effective negative electrode material for LIBs, owing to its versatility in nano-sized forms. The use of nano-sized TiO2 as an electrode-active material reduces the diffusion distance of Li+ ions. However, TiO2 is adversely affected by its inherently low electronic conductivity, which hinders its rate performance. Herein, we investigated the surface treatment of commercially available TiO2 nanoparticles with anatase structure using a heat-treatment process in the presence of urea or thiourea. Our objective was to leverage the eco-friendly nitridation of TiO2 from the thermal decomposition of urea or thiourea, enhancing their electrochemical performance in lithium-ion batteries while minimizing environmental impact. Specifically, we employed an autogenic reactor (AGR) in a closed space to ensure an adequate reaction between NH3 and TiO2, preventing NH3 from escaping into the external environment, as observed in open systems. Consequently, surface nitridation enhanced the overall electrochemical performance, including the rate capability, capacity retention, and initial Coulombic efficiency (ICE). Notably, a remarkable enhancement was observed for the thiourea-treated TiO2. Compared to the pristine TiO2, the thiourea-treated TiO2 demonstrated a nearly threefold increase in capacity at 1.0 C and a nearly two-fold increase in capacity retention.

산소가 첨가된 Cr 박막의 NH3 분위기에서의 질화 처리에 의한 구조적 특성 (Structural Characteristics by Nitridation of Oxygen Added Cr Thin Films in NH3 Atmosphere)

  • 김단비;김선태
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.635-641
    • /
    • 2021
  • Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 ℃ for various times. X-ray diffraction results show that nitridation begins at 500 ℃, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 ℃. And, at temperatures higher than 900 ℃, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 ℃, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.