Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.11.635

Structural Characteristics by Nitridation of Oxygen Added Cr Thin Films in NH3 Atmosphere  

Kim, Danbi (Department of Materials Science and Engineering, Hanbat National University)
Kim, Seontai (Department of Materials Science and Engineering, Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 635-641 More about this Journal
Abstract
Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 ℃ for various times. X-ray diffraction results show that nitridation begins at 500 ℃, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 ℃. And, at temperatures higher than 900 ℃, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 ℃, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.
Keywords
DC sputter; Cr thin-film; CrN; nitridation; inter-diffusion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Milosev, H. H. Strehblow and B. Navinsek, Surf. Coat. Technol., 74-75, 897 (1995).   DOI
2 W. Mayr, W. Lenguer, P. Ettmayer, D. Rafaja, J. Bauer and M. Bhon, J. Phase Equil., 20, 35 (1999).   DOI
3 J. G. Buijnsters, P. Shankar, J. Sietsma and J. J. Meulen, Mater. Sci. Eng., A341, 289 (2003).
4 C. Jimrnez, J. Perrirre, C. Palacio, J. P. Enard and J. M. Albella, Thin Solid Films, 228, 247 (1993).   DOI
5 Q. Sun and Z. Fu, Electrochem. Solid State Lett., 10, A189 (2007).   DOI
6 L. Hultman, Vacuum, 57, 1 (2000).   DOI
7 P. Hones, N. Martin, M. Regula and F. Levy, J. Phys. D: Appl. Phys., 36, 1023 (2003).   DOI
8 K. Liu, S. Young, S. Chang, T. Hsueh, H. Hung, S. Chen and Y. Chen, J. Alloys Compd., 511, 1 (2012).   DOI
9 K. Ibrahim, M. M. Rahman, H. Taha, E. Mohammadpour, Z. Zhou, C. Y. Yin, A. Nikoloski and Z. T. Jiang, Appl. Surf. Sci., 440, 1001 (2018).   DOI
10 E. Haye, A. Achour, A. Guerra, F. Moulai, T. Hadjersi, R. Boukherroub, A. Panepinto, T. Brousse, J. J. Pireaux and S. Lucas, Electrochim. Acta, 324, 134890 (2019).   DOI
11 R. Li, Y. Cai, K. Wippermann and W. Lehnert, J. Power Sources, 434, 226718 (2019).   DOI
12 S. W. Russell, J. Li, T. L. Alford, P. R. Oakey and S. C. Shatas, Appl. Surf. Sci., 90, 455 (1995).   DOI
13 J. Kim, C. Byun and S. Kim, Korean J. Mater. Res., 24, 194 (2014).   DOI
14 Y. Kubo, Y. Sonohara and S. Uemura, Appl. Surf. Sci., 553, 149437 (2021).   DOI
15 R. T. Haasch, T. Y. Lee, D. Gall, J. E. Green and I. Petrov, Surf. Sci. Spectra, 7, 3 (2000).
16 A. Lippitz and T. Hubert, Surf. Coat. Technol., 200, 250 (2005).   DOI
17 S. Agouram, F. Bodart and G. Terwagne, Surf. Coat. Technol., 180-181, 164 (2004).   DOI
18 B. E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965).   DOI
19 J. Lee and S. Kim, Korean J. Mater. Res., 15, 348 (2005).   DOI
20 B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p. 407, Addison-Wesley, London (1978).