• Title/Summary/Keyword: Surface marker

Search Result 235, Processing Time 0.028 seconds

Numerical Simulation of Breaking Waves around a Two-Dimensional Rectangular Cylinder Piercing Free Surface

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.29-43
    • /
    • 2001
  • In this paper, free surface flows around an advancing two-dimensional rectangular cylinder piercing the free surface are studied using numerical and experimental methods. Especially, wave breaking phenomenon around the cylinder is treated in detail. A series of numerical simulations and experiments were performed for the purpose of comparison. For the numerical simulations, a finite difference method was adopted with a rectangular grid system, and the variation of the free surface was computed by the marker density method. The computational results are compared with the experiments. It is confirmed that the present numerical method is useful for the numerical simulation of nonlinear free surface waves around a piercing body.

  • PDF

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Numerical Analysis of Free Surface Flows Using Adaptable Surface Particle Method based on Grid System (격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • In this study, the surface marker method, one of the particle tracking methods, used to track the free surface is extended to cover the more general cases easily including the collision and separation of the free surface. In surface particle method to redistribute particles effectively using the grid system, the free surface is composed of the sum of quadrilaterals having four curves where fixed markers are placed at ends of each curve. Fixed markers are used to know how curves are connected to each other. The position of fixed markers can move as the free surface deforms but all fixed markers cannot be deleted during all time of simulation to keep informations of curve connection. In the case of the collision or separtion of the free surface where several curves can be intersected disorderly, severe difficulties can occur to define newly states of curve connection. In this study, the adaptable surface parTicle method without fixed markers is introduced. Intersection markers instead of the fixed markers are used to define quadrilaterals. The position of the intersection markers is defined to be the intersection point between the free surface and the edge of the grid and it can be added or deleted during the time of simulation to allow more flexibilities. To verify numerical schemes, two flow cases are simulated and the numerical results are compared with other's one and shown to be valid.

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

Immunopathological studies in mice exposed to bisphenol A (마우스에서 bisphenol A 노출로 인한 면역병리학적 연구)

  • 변정아;표명운
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.324-330
    • /
    • 2002
  • Bisphenol A (BPA) is a monomer widely used in the manufacturing polycarbonate plastics or epoxy resin, and xenobiotics recently known as endocrine disrupting chemical. In this paper, to assess the effects of bisphenol A on immunopathological parameters (body weight, organ weight, hematological parameters, cellularity and surface marker) in mice, ICR female mice were orally exposed to BPA dissolved in olive oil as concentrations of 100, 500, 1000 ㎎/㎏/day b.w. 5 days a week for 30 days (subacute exposure). Liver - and kidney weight was significantly increased as dose-dependent manner, but body- , spleen- and thymus- weight didn't changed. In hematological parameters, WBC and MCHC were lowered but HCT and MCV were siginificantly enhanced. There was no significant differences in peritoneal macrophages number of the mice exposed to BPA. However, number of splenocytes of spleen, CD3/sup +/ and CD4/sup +/ cell in splenocytes, CD4/sup +/ and CD8/sup +/ cell in thymocytes were decreased at the mice subacutely exposed to BPA. In addition, BPA decreased expression of B7-1 and B7-2 on macrophages. Therefore, these results showed BPA may affect hematological parameters, cellularity and surface marker of immunocytes.

  • PDF

Numerical Analysis on Flow Fields and the Calculation of Wave Making Resistance about Air Supported Ships (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y.-G.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1996
  • Numerical computations are carried out to analyze the characteristics of flow fields around Air Supported Ships. The computations are performed in a rectangular grid system based on MAC(Marker And Cell) method. The governing equations are represented in finite difference forms by forward differencing in time and centered differencing in space except for its convection terms. For the certification of this numerical analysis method, the computations of flow fields around a Catamaran, an ACV(Air Cushion Vehicle) modeled with pressure distribution on free surface and two SES(Surface Effect Ship)'s are carried out, The results of the present computations are compared with the previously presented computational and experimental results in the same condition.

  • PDF

Numerical Simulation on the Free Surface using implicit boundary condition (내재적 경계 조건을 이용한 자유표면 유동 수치해석)

  • Lee G. H.;Baek J. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows with free-surface. The Navier-Stokes equations governing the flows have been discretized by means of finite-difference approximations, and the resulting equations have been solved via the SIMPLE-C algorithm. The free-surface is defined by the motion of a set of marker particles and the interface behaviour was investigated by means of a "Lagrangian" technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.

Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line

  • Rapuano, Bruce E.;Hackshaw, Kyle;Macdonald, Daniel E.
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.95-104
    • /
    • 2012
  • Purpose: The purpose of this study was to determine whether increasing the Ti6Al4V surface oxide negative charge through heat ($600^{\circ}C$) or radiofrequency plasma glow discharge (RFGD) pretreatment, with or without a subsequent coating with fibronectin, stimulated osteoblast gene marker expression in the MC3T3 osteoprogenitor cell line. Methods: Quantitative real-time polymerase chain reaction was used to measure changes over time in the mRNA levels for osteoblast gene markers, including alkaline phosphatase, bone sialoprotein, collagen type I (${\alpha}1$), osteocalcin, osteopontin and parathyroid hormone-related peptide (PTH-rP), and the osteoblast precursor genes Runx2 and osterix. Results: Osteoprogenitors began to differentiate earlier on disks that were pretreated with heat or RFGD. The pretreatments increased gene marker expression in the absence of a fibronectin coating. However, pretreatments increased osteoblast gene expression for fibronectin-coated disks more than uncoated disks, suggesting a surface oxide-mediated specific enhancement of fibronectin's bioactivity. Heat pretreatment had greater effects on the mRNA expression of genes for PTH-rP, alkaline phosphatase and osteocalcin while RFGD pretreatment had greater effects on osteopontin and bone sialoprotein gene expression. Conclusions: The results suggest that heat and RFGD pretreatments of the Ti6Al4V surface oxide stimulated osteoblast differentiation through an enhancement of (a) coated fibronectin's bioactivity and (b) the bioactivities of other serum or matrix proteins. The quantitative differences in the effects of the two pretreatments on osteoblast gene marker expression may have arisen from the unique physico-chemical characteristics of each resultant oxide surface. Therefore, engineering the Ti6Al4V surface oxide to become more negatively charged can be used to accelerate osteoblast differentiation through fibronectin-dependent and independent mechanisms.