Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2016.03.007

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system  

Jeong, Kwang-Leol (Research Center, NextFOAM Co., Ltd.)
Lee, Young-Gill (Dept. of Naval Arch. and Ocean Eng., Inha University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.8, no.3, 2016 , pp. 277-300 More about this Journal
Abstract
The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.
Keywords
Floating body; Rectilinear grid; Modified marker-density method; Wave interaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics. Springer.
2 Guo, B.J., Steen, S., Deng, G.B., 2012. Seakeeping prediction of KVLCC2 in head waves with RANS. Appl. Ocean Res. 35, 56-67.   DOI
3 Harlow, F.H.,Welch, J.E., 1965. Numerical calculation of time-dependent viscous incompressible flow of fluids with free-surface. Phys. Fluids 8, 2182-2189.   DOI
4 Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundary. J. Comput. Phys. 39, 201-225.   DOI
5 Hu, C., Kashiwagi, M., 2009. Two-dimensional numerical simulation and experiment on strongly nonlinear wave-body interaction. J. Mar. Sci. Technol. 14, 200-213.   DOI
6 Journee, J.M.J., Massie, W.W., 2001. Offshore Hydromechanics. Delft university of Technology First Edition.
7 Kashiwagi, M., Nakagawa, D., Yamamoto, K., 2012. Analysis of unsteady waves and added resistance using CIP-based cartesian grid method. In: Proceedings of 2nd International Conference on Violent Flows, pp. 238-245. Nantes, France.
8 Kawamura, T., Kuwahara, K., 1984. Computation of high Reynolds number flow around a circular cylinder with surface roughness. In: Proceedings of the AIAA Paper 84-0340.
9 Kim, C.H., 2008. Nonlinear Waves and Offshore Structures. World Scientific.
10 Kim, W.J., Van, S.H., Kim, D.H., 2001. Measurement of flows around modern commercial ship models. Exp. Fluids 31, 567-578.   DOI
11 Lee, J., Kim, J., Choi, H., Yang, K.S., 2011. Sources of spurious force oscillations from an immersed boundary method for moving-body problems. J. Comput. Phys. 230, 2677-2695.   DOI
12 Lee, Y.G., Jeong, K.L., Kim, N.C., 2012. The marker-density method in cartesian grids applied to nonlinear ship. Comput. Fluids 63, 57-69.   DOI
13 Lee, Y.G., Jeong, K.L., Kim, N.C., 2013. A numerical simulation method for free surface flows near a two-dimensional moving body in fixed rectangular grid system. Ocean Eng. 59, 285-295.   DOI
14 Lin, P., 2006. A fixed-grid model for simulation of a moving body in free surface flows. Comput. Fluids 36 (3), 549-561.   DOI
15 Malenica, S., Eatock Taylor, R., Huang, J.B., 1999. Second-Order Water Wave diffraction by an array of vertical cylinder. J. Fluid Mech 390, 349-373.   DOI
16 Mittal, R., Iaccarino, G., 2005. Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239-261.   DOI
17 Noh, W.F., Woodward, P., 1982. SLIC (simple line interface calculation). In: van Dooren, A.I., Zandberger, P.J. (Eds.), Lecture Notes in Physics, vol. 59, pp. 273-285.
18 Ohl, C.O.G., Eatock Taylor, R., Taylor, P.H., Borthwick, A.G.L., 2001. Water wave diffraction by a cylinder array. Part 1. Regular waves. J. FluidMech. 442, 1-32.
19 Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed: Algorithms based on HamiltoneJacobi formulations. J. Comput. Phys. 79, 12-49.   DOI
20 Park, I.R., Van, S.H., Kim, J., Kang, K.J., 2003. Level-set simulation of viscous free surface flow around a commercial hull form. In: Proceedings of the 5th Asian Computational Fluid Dynamics, Busan, Korea.
21 Park, J.C., Kim, M.H., Miyata, H., 1999. Fully non-linear free-surface simulations by a 3d viscous numerical wave tank. Int. J. Numer. Meth. Fluids 29, 685-703.   DOI
22 Roberson, Crowe, 1997. Engineering Fluid Mechanics, sixth ed. Wiley.
23 Simonsen, C.D., Otzen, J.F., Joncquez, S., Stern, F., 2013. EFD and CFD for KCS heaving and pitching in regular head waves. J. Mar. Sci. Technol. http://dx.doi.org/10.1007/s00773-013-0219-0.   DOI
24 Sadat-Hosseini, H., Wu, P.C., Carrica, P.M., Kim, H., Toda, Y., Stern, F., 2013. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Eng. 59, 240-273.   DOI
25 Seo, J.H., Mittal, R., 2011. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230, 7347-7363.   DOI
26 Seo, M.G., Lee, J.H., Park, D.M., Yang, K.K., Kim, K.H., Kim, Y., 2013. Analysis of added resistance: comparative study on different methodologies. In: Proceedings of OMA-2013, OMAE 2013-10228, Nantes, France.
27 Smagorinsky, J., 1963. General circulation experiments with the primitive equations. I. the basic experiment. Mon. Weather Rev. 91, 99-164.   DOI
28 Van, S.H., Kim, W.J., Kim, D.H., Yim, G.T., Lee, C.J., Eom, J.Y., 1997. Measurement of flows around a 3600TEU container ship model. In: Proceedings of the Annual Autumn Meeting, SNAK, Seoul, pp. 300-304.
29 Yang, J., Stern, F., 2009. Sharp interface immersed-boundary/level-set method for wave-body interactions. J. Comput. Phys. 228 (17), 6590-6616.   DOI
30 Yang, K.K., Lee, J.H., Nam, B.W., Kim, Y., 2013a. Analysis of added resistance using a Cartesian-grid-based computational method. J. Soc. Nav. Archit. Korea 50 (2), 79-87.   DOI
31 Yang, K.K., Nam, B.W., Lee, J.H., Kim, Y., 2013b. Numerical analysis of large-amplitude ship motions using FV-based Cartesian grid method. Int J Offshore Polar Eng. 23 (3), 186-196.
32 Davidson, L., 2011. An Introduction to Turbulence Models. Chalmers University of Technology, Sweden.
33 Yokoi, K., 2007. Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm. J. Comput. Phys. 226, 1985-2002.   DOI
34 Youngs, D.L., 1982. Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (Eds.), Numerical Methods for Fluid Dynamics, vol. 24. Academic Press, New York, pp. 273-285.
35 Basting, C., Kuzmin, D., 2013. A minimization-based finite element formulation for interface-preserving level set reinitialization. Computing 95 (1), 13-25.   DOI