• Title/Summary/Keyword: Surface diffusion

Search Result 1,615, Processing Time 0.031 seconds

The study on characterization of current limit and fabrication of device for current limit formed by thick film (후막형 전류제한소자제작과 전류제한특성 연구)

  • Lim, Sung-Hun;Kang, Hyeong-Gon;Choi, Myung-Ho;Han, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1704-1706
    • /
    • 1999
  • $YBa_2Cu_3O_x$ superconducting thick film was fabricated by surface diffusion process of $Y_2BaCUO_5$ and the mixed compound of $(3BaCuO_2+2CuO)$ expected to be liquid phase above the peritectic temperature of YBa2Cu30x. For the surface diffusion. 3BaCu02+2CuO mixed with binder material was patterned on $Y_2BaCuO_5$ substrate by the screen printing method. The characteristic of current limit on thick film fabricated was measured. The thick film limited the current from $2.8213mA_{rms}$ to $4.2034mA_{rms}$ with $500{\Omega}$ load resistance, and from $4.1831mA{rms}$ to $4.2150mA_{rms}$ with $10{\Omega}$ load resistance.

  • PDF

$CO_2$ Separation Using Surface Modified Silica Membrane (표면개질 실리카막을 이용한 $CO_2$선택투과분리)

  • 김성수;최현교;박홍채;김태옥;서봉국
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2000
  • To improve $CO_2$pemselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-$600^{\circ}C$. The silica was effectively deposited in the mesopores of a ${\gamma}$-alumina film coated on a porous $\alpha$-alumina tube by evacuating the reactants through the porous wall. In this membrane, $CO_2$interacts, to some extent, with the pore wall, and $CO_2$/$N_2$selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no $CO_2$selectivity. The silica membrane prepared from TEOS-ethanol-water-HCI solution showed that $CO_2$permeance was $2.5$\times$10^{-7}mol/s^{-1}.m^{-2}.Pa^{-1} at 30{\circ}C$ and $CO_2$/$N_2$selectivity was approximately 3. The $CO_2$permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.

  • PDF

Chloride penetration in anchorage concrete of suspension bridge during construction stage

  • Yang, In-Hwan;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Steel corrosion in embedded steel causes a significant durability problems and this usually propagates to structural degradation. Large-scaled concrete structures, PSC (Pre-stressed Concrete) or RC (Reinforced Concrete) structures, are usually constructed with mass concrete and require quite a long construction period. When they are located near to sea shore, chloride ion penetrates into concrete through direct or indirect exposure to marine environment, and this leads durability problems. Even if the structures are sheltered from chloride ingress outside after construction, the chloride contents which have been penetrated into concrete during the long construction period are differently evaluated from the initially mixed chloride content. In the study, chloride profiles in cores extracted from anchorage concrete block in two large-scaled suspension bridge (K and P structure) are evaluated considering the exposure periods and conditions. Total 21 cores in tendon room and chamber room were obtained, and the acid-soluble chlorides and compressive strength were evaluated for the structures containing construction period around 3 years. The test results like diffusion coefficient and surface chloride content from the construction joint and cracked area were also discussed with the considerations for maintenance.

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite

  • Fu, Da-Xue;Feng, Nai-Xiang;Wang, Yao-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2483-2488
    • /
    • 2012
  • The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1172-1177
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the change of soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth region). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Thermal Effluent Diffusion and Flow Characteristics using the TGPS Buoy (TGPS 부이를 이용한 온배수 확산과 흐름 특성)

  • 박일흠;이연규;최정민
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.614-617
    • /
    • 2000
  • To get the maximum diffusion boundary of thermal effluent of Youngkwang Nuclear Power Plant, paths of TGPS Buoy and temperatures of surface water are obtained to 4 times at spring tide during 1 year. According to the paths of TGPS Buoy, the flumes of thermal effluent are moved about 12km from outlet to SW or WSW direction. After 3∼4 times of tidal period the waters are reached to Chilsan Island because the ebb flow is more predominant than the flood flow in this area. At the spring and fall season, a sudden drop of surface water temperature is detected around 5km radius from the outlet. At the summer season, it is measured about 10km. On the other hand the flumes are continuously cooled down by the atmosphere condition at winter season.

  • PDF

In-doping effects on the Structural and Electrical Properties of ZnO Films prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제초한 ZnO막의 전기적, 구조적 특성에 미치는 In첨가 효과)

  • 심대근;양영신;마대영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1010-1013
    • /
    • 2001
  • Zinc oxide(ZnO) films were prepared by ultrasonic spray pyrolysis on indium (In) films deposited by evaporation and subsequently submitted to rapid thermal annealing (RTA). The RTA was processed in air or a vacuum ambient. The crystallographic properties and surface morphologies of the films were characterized before and after the RTA by X-ray diffraction (XRD) and scanning electron microscopy(SEM), respectively. The resistivity variation of the films with RTA temperature and time was measured by the 4-point probe method. Auger electron spectroscopy(AES) was carried out to figure out the distribution of indium atoms in the ZnO films. The resistivity of the ZnO on In(ZnO/In) films decreased to 2${\times}$10$\^$-3/ $\Omega$cm by diffusion of the In. The In diffusion into the ZnO films roughened the surface of the ZnO films. The results of depth profile by AES showed a hump of In atoms around ZnO/In interface after the RTA at 800$^{\circ}C$, which disappeared by the RTA at 1000$^{\circ}C$. The effects of temperature, time and ambient during the RTA on the structural and electrical properties of the ZnO/In films were discussed.

  • PDF

Computer Simulation for the Growth of Cr-nitride Formed on Electroplated Cr during ion-Nitriding (이온 질화에 의해 크롬 도금 층 위에 형성된 크롬 질화물의 성장에 관한 전산 모사)

  • 엄지용;이병주;남기석;권식철;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.231-239
    • /
    • 2001
  • The structure and composition of Cr-nitrides formed on an electroplated hard Cr layer during an ionnitriding process was analyzed, and the growth kinetics of the Cr-nitrides was examined as a function of the ion-nitriding temperature and time in order to establish a computer simulation model prediction the growth behavior of the Cr-nitride layer. The Cr-nitrides formed during the ion-nitriding at $550~770^{\circ}C$ were composed of outer CrN and inner $Cr_2$N layers. A nitrogen diffusion model in the multi-layer based on fixed grid FDM (Finite Difference Method) was applied to simulate the growth kinetics of Cr-nitride layers. By measuring the thickness of each Cr-nitride layer as a function of the ion-nitriding temperature and time, the activation energy for growth of each Cr-nitride was determined; 82.26 KJ/mol for CrN and 83.36 Kj/mol for $Cr_2$N. Further, the nitrogen diffusion constant was determined in each layer; $9.70$\times$10^{-12}$ /$m^2$/s in CrN and $2.46$\times$10^{-12}$ $m^2$/s in $Cr_2$N. The simulation on the growth kinetics of Cr-nitride layers was in good agreements with the experimental results at 550~72$0^{\circ}C$.

  • PDF

The study on characterization and fabrication of current limiting device using HTSC-thick film (고온초전도후막을 이용한 전류제한소자제작 및 특성연구)

  • Lim, Sung-Hun;Kang, Hyeong-Gon;Chung, Dong-Chul;Du, Ho-Ik;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.242-246
    • /
    • 1999
  • For the fabrication of fault current limiting device using HTSC thick film, YBa$_2Cu_3O_x$ superconducting thick film was formed by surface diffusion process of the Y$_2BaCUO_5$ and the mixed compound of (3BaCuO$_2$+2CuO) expected to be liquid phase above the peritectic temperature of YBa$_2Cu_3O_x$. For the surface diffusion, the compounds of 3BaCuO$_2$+2CuO mixed with binder material was patterned on Y$_2BaCUO_5$ substrate by the screen printing method. After proper sintering, the characteristics of current limit on thick film fabricated was measured. The thick film was able to limit the current from 2.8213 mA$_{rms}$nu to 4.2034 mA$_{rms}$ with 500${\omega}$ load resistance, and from 4.1831 mA$_{rms}$ to 4.2150 mA$_{rms}$ with 10${\omega}$ load resistance.

  • PDF

The diffusion model on the electrodes with nano-porous surfaces (나노 다공성 표면 전극 위의 확산 모델)

  • Park, Jin-Hyoung;Park, Sae-Jin;Chung, Taek-Dong;Kim, Hee-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1100-1103
    • /
    • 2003
  • One of the good ways to raise the rate of the electrochemical reaction is to broaden the effective surface area of the electrode by developing cylindrical nano-pores on the surfaces. The numerous pores of several nanometer in diameter can be used to enhance a specific faradaic reaction so that the nano-porous structure attract keen attention in terms of implication of new bio/chemical sensors, in which no chemical modification is involved. Amperometric glucose sensor is a representative example that needs the selective enhancement of glucose oxidation over the current due to physiological interferents such as ascorbic acid. The present paper reports how the ascorbic acid and glucose diffuse around the nano-porous surface by simulation study, for which 2D-FDM (Finite Difference Method) was adopted. The results of the simulation not only consist with those from electrochemical experiments but also reveal valuable potential for more advanced application of the nano-porous electrode.

  • PDF