• Title/Summary/Keyword: Surface deposition

Search Result 3,588, Processing Time 0.031 seconds

High rate magnetron sputtering of thick Cr-based tribological coatings

  • Bin, Jin H.;Nam, Kyung H.;Boo, Jin H.;Han, Jeon G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.409-413
    • /
    • 2001
  • In this study, high rate deposition of thick CrNx films was carried out by crossed field unbalanced magnetron sputtering for the special application such as piston ring employed in automobile engine. For the high rate deposition and thick CrNx films formation with thickness of 30$\mu\textrm{m}$, high power density of $35W/cm^2$ in each target was induced and the multi-layer films of Cr/CrN and $\alpha$-Cr/CrN were synthesized by control of $N_2$ flow rate. The dynamic deposition rate of Cr and $\alpha$-CrN film was reached to 0.17$\mu\textrm{m}$/min and 0.12$\mu\textrm{m}$/rnin and the thick CrN$_{x}$. film of 30$\mu\textrm{m}$ could be obtained less than 5 hours. The maximum hardness was obtained above 2200 kg/mm$^2$ and adhesion strength was measured in about 70N, in case of multi-layers films. And the friction coefficient was measured by 0.4, which was similar to the value of CrN single-layer film.m.

  • PDF

Effect of the surface modification using MWCNTs with different L/D by two different methods of deposition on the IFSS of single carbon fiber-epoxy resin composite

  • Herrera-Sosa, Minerva L.;Valadez-Gonzalez, Alex;Vazquez-Torres, Humberto;Mani-Gonzalez, Pierre G.;Herrera-Franco, Pedro J.
    • Carbon letters
    • /
    • v.24
    • /
    • pp.18-27
    • /
    • 2017
  • Multiwall carbon nanotubes (MWCNT) with two different (L/D) aspect ratios ($7{\pm}2{\mu}m/140{\pm}30nm$ and $0.5-2{\mu}m/8-15nm$) were surface treated using nitric acid ($HNO_3$) and polyethyleneimine (PEI) prior to their deposition on carbon fibers (CF). Before the hierarchical reinforcement with CF-MWCNT, the CFs were treated with 3-glycidoxypropyltrime-thoxysilane, a coupling agent (Z6040) and with poly(amidoamine) (PAMAM) a dendrimer containing an ethylenediamine core and amine surface groups. The MWCNT were deposited on the CF using two methods, by electrostatic attraction and by chemical reactions. The changes in the CF surface morphology after the MWCNT deposition were analyzed using SEM, which revealed a higher density and uniform coverage for the PAMAM-treated CF and the short MWCNTs. The interfacial adhesion of the composite materials was evaluated using the single fiber fragmentation technique. The results indicated an improvement in the interfacial shear strength with the addition of the short-MWCNTs treated with acid solutions and grafted onto the surface of the CF fiber using electrostatic attraction.

Experimental Investigation on the Pool Boiling Critical Heat Flux of Water-Based Alumina and Titania Nanofluids on a Flat Plate Heater (평판형 히터를 이용한 알루미늄과 타이타늄 산화물 나노유체의 풀비등 임계열유속에 관한 실험적 연구)

  • Ahn, Ho-Seon;Kim, Hyung-Dae;Jo, Hang-Jin;Kang, Soon-Ho;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.729-736
    • /
    • 2009
  • Pool boiling heat transfer and critical heat flux (CHF) of water-based nanofluids with alumina and titania nanoparticles of 0.01% by volume were investigated on a disk heater at saturated and atmospheric conditions. The experimental results showed that the boiling in nanofluids caused the considerable increase in CHF on the flat surface heater. It was revealed by visualization of the heater surface subsequent to the boiling experiments that a major amount of nanoparticles deposited on the surface during the boiling process. Pool boiling of pure water on the surface modified by such nanoparticle deposition resulted in the same CHF increases as what boiling nanofluids, thus suggesting the CHF enhancement in nanofluids was an effect of the surface modification through the nanoparticle deposition during nanofluid boiling. Possible reasons for CHF enhancement in pool boiling of nanofluids are discussed with surface property changes caused by the nanoparticle deposition.

Improvement on Surface and Electrical Properties of Polymer Insulator Coated TiO2 Thin Film by Atomic Layer Deposition (원자층 증착장치에 의한 TiO2 박막 코팅된 폴리머 절연체의 표면 및 전기적 특성의 향상)

  • Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.440-444
    • /
    • 2016
  • Titanium oxide ($TiO_2$) thin films were synthesized on polymer insulator and Si substrates by atomic layer deposition (ALD) method. The surface and electrical properties of $TiO_2$ films synthesized at various ALD cycle numbers were investigated. The synthesized $TiO_2$ films exhibited higher contact angle and smooth surface. The contact angle of $TiO_2$ films was increased with the increase of ALD-cycle number. Also, the rms surface roughness of films was slightly rough with the increase of ALD-cycle number. The leakage current on $TiO_2$ film surface synthesized at various conditions were uniformed, and the values were decreased with the increase of ALD-cycle number. In the results, the performance of $TiO_2$ films for self-cleaning critically depended on a number of ALD-cycle.

Formation of $Y_{2}O_{3}$ nanodots on substrate surface using the rf-sputtering method

  • Chang, K.C.;Yoo, J.M.;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.6-8
    • /
    • 2008
  • $Y_{2}O_{3}$ nanodots have been deposited on top of the substrate surface using rf-sputtering method. This approach was adopted to be able to modulate the substrate surface with nanodots used as a seed for the flux pinning sites in the superconducting films. The nanodot density of $Y_{2}O_{3}$ was controlled mainly using the deposition time, rf-power, and substrate temperature. $Y_{2}O_{3}$ nanodots with ${\sim}\;50\;nm$ in diameter and ${\sim}\;3\;nm$ in height were obtained at rf-sputtering time of about 15 seconds using 400 watts of rf-power and $630^{\circ}C$ of substrate temperature. As deposition time increased up to about 30 seconds, the interconnected islands of $Y_{2}O_{3}$ nanodots formed, which can be clearly observed with AFM surface image. The substrate surface was covered entirely with $Y_{2}O_{3}$ layer above the deposition time of 60 seconds. The modulated surface morphologies and cross section analysis of deposited $Y_{2}O_{3}$ nanodots at various experimental conditions have been examined using AFM and discussed with respect to the flux pinning sites for the practical application.

ANALYSIS OF THIN FILM POLYSILICON ON GLASS SYNTHESIZED BY MAGNETRON SPUTTERING

  • Min J. Jung;Yun M. Chung;Lee, Yong J.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.68-68
    • /
    • 2001
  • Thin films of polycrystalline silicon (poly-Si) is a promising material for use in large-area electronic devices. Especially, the poly-Si can be used in high resolution and integrated active-matrix liquid-crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs) because of its high mobility compared to hydrogenated _amorphous silicon (a-Si:H). A number of techniques have been proposed during the past several years to achieve poly-Si on large-area glass substrate. However, the conventional method for fabrication of poly-Si could not apply for glass instead of wafer or quartz substrate. Because the conventional method, low pressure chemical vapor deposition (LPCVD) has a high deposition temperature ($600^{\circ}C-1000^{\circ}C$) and solid phase crystallization (SPC) has a high annealing temperature ($600^{\circ}C-700^{\circ}C$). And also these are required time-consuming processes, which are too long to prevent the thermal damage of corning glass such as bending and fracture. The deposition of silicon thin films on low-cost foreign substrates has recently become a major objective in the search for processes having energy consumption and reaching a better cost evaluation. Hence, combining inexpensive deposition techniques with the growth of crystalline silicon seems to be a straightforward way of ensuring reduced production costs of large-area electronic devices. We have deposited crystalline poly-Si thin films on soda -lime glass and SiOz glass substrate as deposited by PVD at low substrate temperature using high power, magnetron sputtering method. The epitaxial orientation, microstructual characteristics and surface properties of the films were analyzed by TEM, XRD, and AFM. For the electrical characterization of these films, its properties were obtained from the Hall effect measurement by the Van der Pauw measurement.

  • PDF

Epitaxial Growth of GaAs Thin Films Using MOCVD (MOCVD를 이용한 GaAs 박막의 에피성장)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.59-64
    • /
    • 2004
  • GaAs thin films were grown epitaxially by MOCVD method on (001) GaAs substrate. And as a surfactant, Bi(bismuth) thin films were deposited on GaAs buffer layer by using TMBi(trimethylbismuth) source. In-situ reflectance difference spectroscopy(RDS) was used to monitor the surface reconstruction of GaAs and Bi thin films. As the results, under the exposure of TBAs(tertiarybuthylarsine) and hydrogen atmosphere, the surface reconstruction of GaAs was changed from As-rich c($4{\times}4$) to As-rich ($2{\times}4$), which was due to the adsoption and desorption of As dimers. The first bismuth surface related RDS signal was reported. At the deposition temperature of $450^{\circ}C$, Bi-terminated GaAs surface showed the RDS spectrum similar to that of Sb-terminated GaAs surface, possibly a ($2{\times}4$) surface. And Bi surface layers were rapidly evaporated with increasing the deposition temperature($550^{\circ}C$), finally becoming As-terminated ($2{\times}4$) surface.

  • PDF

Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method (PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces (소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성)

  • Lee, Jae-Bong;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

Surface Hardness as a Function of Laser Metal Deposition Parameters (레이저 메탈 디포지션 변수에 의한 표면경도 특성 분석)

  • Kim, WH;Jung, BH;Park, ID;Oh, MH;Choi, SW;Kang, DM
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • The characteristics of the laser metal deposition parameters were studied to enhance the deposition efficiency using a diode pumped disk laser. STD61 hot tool steel plate and Fe based AISI M2 alloy were used as a substrate and powder for the laser metal deposition, respectively. Among the laser metal deposition parameters the laser power, track pitch and powder feed rate were used to estimate the deposition efficiency. From the experimental results, the deposition efficiency was shown to be excellent when 1.8kW laser power 500um track pitch and 10g/min of the powder feed rate were used. For this optimal condition the average hardness of the deposition track was approximately 830HV, and this value is 30~50% better than the hardness of the commercially produced tool steel after heat treatment.