Browse > Article
http://dx.doi.org/10.9714/psac.2008.10.4.006

Formation of $Y_{2}O_{3}$ nanodots on substrate surface using the rf-sputtering method  

Chang, K.C. (Korea Institute of Materials Science)
Yoo, J.M. (Korea Institute of Materials Science)
Kim, Y.K. (Korea Institute of Materials Science)
Wang, X.L. (Institute for Superconducting and Electronic materials, Univ. of Wollongong)
Dou, S.X. (Institute for Superconducting and Electronic materials, Univ. of Wollongong)
Publication Information
Progress in Superconductivity and Cryogenics / v.10, no.4, 2008 , pp. 6-8 More about this Journal
Abstract
$Y_{2}O_{3}$ nanodots have been deposited on top of the substrate surface using rf-sputtering method. This approach was adopted to be able to modulate the substrate surface with nanodots used as a seed for the flux pinning sites in the superconducting films. The nanodot density of $Y_{2}O_{3}$ was controlled mainly using the deposition time, rf-power, and substrate temperature. $Y_{2}O_{3}$ nanodots with ${\sim}\;50\;nm$ in diameter and ${\sim}\;3\;nm$ in height were obtained at rf-sputtering time of about 15 seconds using 400 watts of rf-power and $630^{\circ}C$ of substrate temperature. As deposition time increased up to about 30 seconds, the interconnected islands of $Y_{2}O_{3}$ nanodots formed, which can be clearly observed with AFM surface image. The substrate surface was covered entirely with $Y_{2}O_{3}$ layer above the deposition time of 60 seconds. The modulated surface morphologies and cross section analysis of deposited $Y_{2}O_{3}$ nanodots at various experimental conditions have been examined using AFM and discussed with respect to the flux pinning sites for the practical application.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, D. F. Lee, Science 311, pp. 1911, 2006   DOI   ScienceOn
2 T. Haugan, P. N. Barnes, R. Wheeler, F. Melsenkothen, M. Sumption, Nature 430, pp. 867, 2004   DOI   ScienceOn
3 S. Kang, A. Goyal, J. Li, P. Martin, A. Ijaduola, J. R. Thompson, M. Paranthaman, Physica C 457, pp. 41, 2007   DOI   ScienceOn
4 M. S. Bhuiyan, M. Paranthaman, S. Kang, D. F. Lee, K. Salama, Physica C 422, pp. 95, 2005   DOI
5 M. Parans Paranthaman, S. Sathyamurthy, L. Heatherly, P. M. Martin, A. Goyal, T. Kodenkandath, X. Li, C. L. H. Thieme, M. W. Rupich, Physica C 445-448, pp. 529, 2006   DOI   ScienceOn
6 A. Crisan, S. Fujiwara, J. C. Nie, A. Sundaresan, H. Ihara, Appl. Phys. Lett 79, pp. 4547, 2001   DOI   ScienceOn
7 A. Pomar, A. Llordes, M. Gibert, S. Ricart, T. Puig, X. Obradors, Physica C 460-462, pp. 1401, 2007   DOI   ScienceOn