Browse > Article
http://dx.doi.org/10.5714/CL.2017.24.018

Effect of the surface modification using MWCNTs with different L/D by two different methods of deposition on the IFSS of single carbon fiber-epoxy resin composite  

Herrera-Sosa, Minerva L. (Unidad de Materiales, Centro de Investigacion Cientifica de Yucatan A.C.)
Valadez-Gonzalez, Alex (Unidad de Materiales, Centro de Investigacion Cientifica de Yucatan A.C.)
Vazquez-Torres, Humberto (Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa)
Mani-Gonzalez, Pierre G. (Departamento de Fisica y Matematicas, Universidad Autonoma de Ciudad Juarez)
Herrera-Franco, Pedro J. (Unidad de Materiales, Centro de Investigacion Cientifica de Yucatan A.C.)
Publication Information
Carbon letters / v.24, no., 2017 , pp. 18-27 More about this Journal
Abstract
Multiwall carbon nanotubes (MWCNT) with two different (L/D) aspect ratios ($7{\pm}2{\mu}m/140{\pm}30nm$ and $0.5-2{\mu}m/8-15nm$) were surface treated using nitric acid ($HNO_3$) and polyethyleneimine (PEI) prior to their deposition on carbon fibers (CF). Before the hierarchical reinforcement with CF-MWCNT, the CFs were treated with 3-glycidoxypropyltrime-thoxysilane, a coupling agent (Z6040) and with poly(amidoamine) (PAMAM) a dendrimer containing an ethylenediamine core and amine surface groups. The MWCNT were deposited on the CF using two methods, by electrostatic attraction and by chemical reactions. The changes in the CF surface morphology after the MWCNT deposition were analyzed using SEM, which revealed a higher density and uniform coverage for the PAMAM-treated CF and the short MWCNTs. The interfacial adhesion of the composite materials was evaluated using the single fiber fragmentation technique. The results indicated an improvement in the interfacial shear strength with the addition of the short-MWCNTs treated with acid solutions and grafted onto the surface of the CF fiber using electrostatic attraction.
Keywords
carbon nanotubes; chemical treatment; carbon fibers; surface treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moreno Chulim MV. Caracterizacion Fisicoquimica de la Interface Fibra de Carbon-Resina Epoxica, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, MSc Thesis (2004).
2 Sun L, Warren GL, O'Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ. Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon, 46, 320 (2008). https://doi.org/10.1016/j.carbon.2007.11.051.   DOI
3 Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). https://doi.org/10.1016/0008-6223(95)00021-5.   DOI
4 Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L. Mechanical properties of carbon nanotubes. Appl Phys A, 69, 255 (1999). https://doi.org/10.1007/s003390050999.
5 Romhany G, Szebenyi G. Interlaminar fatigue crack growth behavior of MWCNT/carbon fiber reinforced hybrid composites monitored via newly developed acoustic emission method. eXPRESS Polym Lett, 6, 572 (2012). https://doi.org/10.3144/expresspolymlett.2012.60.   DOI
6 Chand S. Review carbon fibers for composites. J Mater Sci, 35, 1303 (2000). https://doi.org/10.1023/A:1004780301489.   DOI
7 Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW. Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys, 91, 6034 (2002). https://doi.org/10.1063/1.1466880.   DOI
8 Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC. Multiscale carbon nanotube: carbon fiber reinforcement for advanced epoxy composites. Langmuir, 23, 3970 (2007). https://doi.org/10.1021/la062743p.   DOI
9 Dzenis Y. Structural nanocomposites. Science, 319, 419 (2008). https://doi.org/10.1126/science.1151434.   DOI
10 Popov VN. Carbon nanotubes: properties and application. Mater Sci Eng R Rep, 43, 61 (2004). https://doi.org/10.1016/j.mser.2003.10.001.   DOI
11 Peng Q, He X, Li Y, Wang C, Wang R, Hu PA, Yan Y, Sritharan T. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. J Mater Chem, 22, 5928 (2012). https://doi.org/10.1039/C2JM16723A.   DOI
12 Chou TW, Gao L, Thostenson ET, Zhang Z, Byun JH. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol, 70, 1 (2010). https://doi.org/10.1016/j.compscitech.2009.10.004.   DOI
13 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991).   DOI
14 Qian H, Bismarck A, Greenhalgh ES, Shaffer MSP. Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos Part A Appl Sci Manuf, 41, 1107 (2010). https://doi.org/10.1016/j.compositesa.2010.04.004.   DOI
15 Mazov I, Kuznetsov VL, Simonova IA, Stadnichenko AI, Ishchenko AV, Romanenko AI, Tkachev EN, Anikeeva OB. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology. Appl Surf Sci, 258, 6272 (2012). https://doi.org/10.1016/j.apsusc.2012.03.021.   DOI
16 Kamae T, Drzal LT. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fibermatrix interphase-Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos Part A Appl Sci Manuf, 43, 1569 (2012). https://doi.org/10.1016/j.compositesa.2012.02.016.   DOI
17 Mei L, He X, Li Y, Wang R, Wang C, Peng Q. Grafting carbon nanotubes onto carbon fiber by use of dendrimers. Mater Lett, 64, 2505 (2010). https://doi.org/10.1016/j.matlet.2010.07.056.   DOI
18 Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokoua A, Kallitsis I, Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46, 833 (2008). https://doi.org/10.1016/j.carbon.2008.02.012.   DOI
19 Drzal LT. The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength. Mater Sci Eng A, 126, 289 (1990). https://doi.org/10.1016/0921-5093(90)90135-P.   DOI
20 Aviles F, Cauich-Rodriguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 47, 2970 (2009). https://doi.org/10.1016/j.carbon.2009.06.044.   DOI
21 Lee S, Oda T, Shin PK, Lee BJ. Chemical modification of carbon nanotube for improvement of field emission property. Microelectron Eng, 86, 2110 (2009). https://doi.org/10.1016/j.mee.2009.02.021.   DOI
22 Peng Q, Li Y, He X, Lv H, Hu P, Shang Y, Wang C, Wang R, Sritharan T, Du S. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization. Compos Sci Technol, 74, 37 (2013). https://doi.org/10.1016/j.compscitech.2012.10.005.   DOI
23 He X, Wang C, Tong L, Wang R, Cao A, Peng Q, Moody S, Y Li. Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber. Carbon, 50, 3782 (2012). https://doi.org/10.1016/j.carbon.2012.03.053.   DOI
24 Zielke U, Huttinger KJ, Hoffman WP. Surface-oxidized carbon fibers: I. surface structure and chemistry. Carbon, 34, 983 (1996). https://doi.org/10.1016/0008-6223(96)00032-2.   DOI
25 Cauich Cupul JI. Estudio de la Degradacion de la Interface de un Material Compuesto Fibra de Carbon-Resina por Efectos Higrotermicos/Jaiver Ivan Cauich Cupul, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, MSc Thesis (2004).