DOI QR코드

DOI QR Code

Formation of $Y_{2}O_{3}$ nanodots on substrate surface using the rf-sputtering method

  • Chang, K.C. (Korea Institute of Materials Science) ;
  • Yoo, J.M. (Korea Institute of Materials Science) ;
  • Kim, Y.K. (Korea Institute of Materials Science) ;
  • Wang, X.L. (Institute for Superconducting and Electronic materials, Univ. of Wollongong) ;
  • Dou, S.X. (Institute for Superconducting and Electronic materials, Univ. of Wollongong)
  • Published : 2008.11.30

Abstract

$Y_{2}O_{3}$ nanodots have been deposited on top of the substrate surface using rf-sputtering method. This approach was adopted to be able to modulate the substrate surface with nanodots used as a seed for the flux pinning sites in the superconducting films. The nanodot density of $Y_{2}O_{3}$ was controlled mainly using the deposition time, rf-power, and substrate temperature. $Y_{2}O_{3}$ nanodots with ${\sim}\;50\;nm$ in diameter and ${\sim}\;3\;nm$ in height were obtained at rf-sputtering time of about 15 seconds using 400 watts of rf-power and $630^{\circ}C$ of substrate temperature. As deposition time increased up to about 30 seconds, the interconnected islands of $Y_{2}O_{3}$ nanodots formed, which can be clearly observed with AFM surface image. The substrate surface was covered entirely with $Y_{2}O_{3}$ layer above the deposition time of 60 seconds. The modulated surface morphologies and cross section analysis of deposited $Y_{2}O_{3}$ nanodots at various experimental conditions have been examined using AFM and discussed with respect to the flux pinning sites for the practical application.

Keywords

References

  1. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, D. F. Lee, Science 311, pp. 1911, 2006 https://doi.org/10.1126/science.1124872
  2. T. Haugan, P. N. Barnes, R. Wheeler, F. Melsenkothen, M. Sumption, Nature 430, pp. 867, 2004 https://doi.org/10.1038/nature02792
  3. S. Kang, A. Goyal, J. Li, P. Martin, A. Ijaduola, J. R. Thompson, M. Paranthaman, Physica C 457, pp. 41, 2007 https://doi.org/10.1016/j.physc.2007.02.017
  4. A. Crisan, S. Fujiwara, J. C. Nie, A. Sundaresan, H. Ihara, Appl. Phys. Lett 79, pp. 4547, 2001 https://doi.org/10.1063/1.1428632
  5. M. S. Bhuiyan, M. Paranthaman, S. Kang, D. F. Lee, K. Salama, Physica C 422, pp. 95, 2005 https://doi.org/10.1016/j.physc.2005.03.016
  6. M. Parans Paranthaman, S. Sathyamurthy, L. Heatherly, P. M. Martin, A. Goyal, T. Kodenkandath, X. Li, C. L. H. Thieme, M. W. Rupich, Physica C 445-448, pp. 529, 2006 https://doi.org/10.1016/j.physc.2006.06.006
  7. A. Pomar, A. Llordes, M. Gibert, S. Ricart, T. Puig, X. Obradors, Physica C 460-462, pp. 1401, 2007 https://doi.org/10.1016/j.physc.2007.03.099