• Title/Summary/Keyword: Surface Response

Search Result 4,744, Processing Time 0.032 seconds

Optimal Design of a Washer using a Response Surface Method (반응표면분석법을 이용한 세탁기의 최적설계)

  • Han, Hyeong-Seok;Kim, Tae-Yeong;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1871-1877
    • /
    • 1999
  • An optimal design method using a response surface method for dynamic characteristics of a washer is presented. The proposed method uses the design of experiment and a computer model is used for the experiment. The value of the cost function is estimated using a computer model for each case of the design variable variation. An orthogonal array is used to obtain best cases to be considered with minimum number of experimentation. Using these experimental values, optimal design is performed using a response surface method. The method used in this paper can be applied to any complicated mechanical systems that can be modelled and analyzed by a computer program. The method is applied to the design of dynamic characteristics of a washer.

Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm

  • Hamrouni, Adam;Dias, Daniel;Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.937-945
    • /
    • 2018
  • A probabilistic study of a reinforced earth wall in a frictional soil using the surface response methodology (RSM) is presented. A deterministic model based on numerical simulations is used (Abdelouhab et al. 2011, 2012b) and the serviceability limit state (SLS) is considered in the analysis. The model computes the maximum horizontal displacement of the wall. The response surface methodology is utilized for the assessment of the Hasofer-Lind reliability index and is optimized by the use of a genetic algorithm. The soil friction angle and the unit weight are considered as random variables while studying the SLS. The assumption of non-normal distribution for the random variables has an important effect on the reliability index for the practical range of values of the wall horizontal displacement.

Animated Quantile Plots for Evaluating Response Surface Designs (반응표면실험계획을 평가하기 위한 동적분위수그림)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.285-293
    • /
    • 2010
  • The traditional methods for evaluating response surface designs are alphabetic optimality criteria. These single-number criteria such as D-, A-, G- and V-optimality do not completely reflect the prediction variance characteristics of the design in question. Alternatives to single-numbers summaries include graphical displays of the prediction variance across the design regions. We can suggest the animated quantile plots as the animation of the quantile plots and use these animated quantile plots for comparing and evaluating response surface designs.

Performance Optimization of Hypervelocity Launcher System using Experimental Data

  • Huh, Choul-Jun;Lee, Jin-Ho;Bae, Ki-Joon;Jeon, Kwon-Su;Byun, Yung-Hwan;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1829-1836
    • /
    • 2004
  • This study presents the performance optimization of hypervelocity launcher system by using the experimentall data. During the optimization, the RSM (Response Surface Method) is adopted to find the operating parameters that could maximize the projectile speed. To construct a reliable response surface model, 3 full factorial method is used with the selected design variables, such as piston mass and 2 driver fill pressure. Nine test data could successfully construct the reasonable response surface, which used to yield the optimal operational conditions of the system using the genetic algorithm. The optimization results are confirmed by the experimental test with a good accuracy. Thus, the optimization can improve the performance of the facility.

Optimization of Satellite Upper Platform Using the Various Regression Models (다양한 회귀모델을 이용한 인공위성 플랫폼의 최적화)

  • Jeon, Yong-Sung;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1430-1435
    • /
    • 2003
  • Satellite upper platform is optimized by response surface method which has non-gradient, semi-glogal, discrete and fast convergency characteristics. Sampling points are extracted by design of experiments using Central Composite Method and Factorial Design. Also response surface is generated by the various regression functions. Structure analysis is execuated with regard for static and dynamic environment in launching stage. As a result response surface method is superior to other optimization method with respect to optimum value and cost of computation time. Also a confidence is varified in the various regression models.

  • PDF

Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam (차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계)

  • 이춘승;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

Analysis of Extruded Pectin Extraction from Apple Pomace by Response Surface Methodology

  • Shin, Hae-Hun;Kim, Chong-Tai;Cho, Yong-Jin;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.28-31
    • /
    • 2005
  • To extract apple pectins, apple pomace (AP) was extruded under 14 different conditions of screw speed (250-350 rpm), feed rate of 30-40 kg/hr, and 20-30% moisture content using twin-screw extrusion. Response surface methodology (RSM), based on three variables by three-level factorial design, was employed to investigate effects of screw speed, feed rate, and moisture on dependent variables of extrudates, soluble dietary fiber (SDF), yield of anhydrogalacturonic acid ($Y_{AGA}$) representing pectin, and intrinsic viscosity ([${\eta}$]). Second order models were used to generate three-dimensional response surface for dependent variables, and their coefficients of determination ($R^2$) ranged from 0.96 to 0.99. Moisture content showed highest effect on solubilization of AP.

Optimum Design of BLDC Motor for Cogging Torque Minimization Using Genetic Algorithm and Response Surface Method

  • Jeon, Mun-Ho;Kim, Dong-Hun;Kim, Chang-Eob
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.466-471
    • /
    • 2006
  • This raper presents a new optimization method combining the genetic algorithm with the response surface method for the optimum design of a Brushless Direct Current motor. The method utilizes a regression function approximating an objective function and the window moving and zoom-in method so as to complement disadvantages of both the genetic algorithm and response surface method. The results verify that the proposed method is powerful and effective in reducing cogging torque by optimizing only a few decisive design factors compared with the conventional stochastic methods.

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

Extraction of bridge information based on the double-pass double-vehicle technique

  • Zhan, Y.;Au, F.T.K.;Yang, D.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.679-691
    • /
    • 2020
  • To identify the bridge information from the response of test vehicles passing on it (also known as the indirect approach) has aroused the interest of many researchers thanks to its economy, easy implementation and less disruption to traffic. The surface roughness of bridge remains an obstacle for such method as it contaminates the vehicle response severely and thereby renders many vehicle-response-based bridge identification methods ineffective. This study aims to eliminate such effect with the responses of two different test vehicles. The proposed method can estimate the surface profile of a bridge based on the acceleration data of the vehicles running on the bridge successively, and obtain the normalized contact point response, which proves to be relatively immune to surface roughness. The frequencies and mode shapes of bridge can be further extracted from the normalized contact point acceleration with spectral analysis and Hilbert transform. The effectiveness of the proposed method is verified numerically with a three-span continuous bridge. The influence of measurement noise is also examined.