• Title/Summary/Keyword: Surface Passivation

Search Result 362, Processing Time 0.025 seconds

Flatness of a SOB SOI Substrate Fabricated by Electrochemical Etch-stop (전기화학적 식각정지에 의해 제조된 SDB SOI기판의 평탄도)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.126-129
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point, the passivation potential (PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF

Fabrication of SOl Structures For MEMS Application (초소형정밀기계용 SOl구조의 제작)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.301-306
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be a very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential(OCP) point, the passivation potential(PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF

Investigation of local back surface field for crystalline silicon solar cells using laser (레이저를 이용한 결정질 실리콘 태양전지 국부적 후면 전극 연구)

  • Kwon, Jung-Young;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Choi, Sung-Jin;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.245-245
    • /
    • 2010
  • This paper and the rear passivation experiment was local back surface field Nd:$YVO_4$ green laser and the experiment was used performed to screen printing. Laser power 100%, with a fixed frequency for 60kHz Current of 29A and 30A were tested in two conditions. The point contact distances of 0.2mm, 0.4mm, 0.6mm, 0.8mm and 29A and 30A current conditions, it was found that is suitable for 0.4mm.

  • PDF

Role of Surfaces and Their Analysis in Photovoltaics

  • Opila, Robert L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.72-72
    • /
    • 2011
  • Surface science is intrinsically related to the performance of solar cells. In solar cells the generation and collection of charge carriers determines their efficiency. Effective transport of charge carriers across interfaces and minimization of their recombination at surfaces and interfaces is of utmost importance. Thus, the chemistry at the surfaces and interfaces of these devices must be determined, and related to their performance. In this talk we will discuss the role of two important interfaces, First, the role of surface passivation is very important in limiting the rate of carrier of recombination. Here we will combine x-ray photoelectron spectroscopy of the surface of a Si device with electrical measurements to ascertain what factors determine the quality of a solar cell passivation. In addition, the quality of the heterojunction interface in a ZnSe/CdTe solar cell affects the output voltage of this device. X-ray photoelectron spectroscopy gives some insight into the composition of the interface, while ultraviolet photoemission yields the relative energy of the two materials' valence bands at the junction, which controls the open circuit voltage of the solar cell. The relative energies of ZnSe and CdTe at the interface is directly affected by the material quality of the interface through processing.

  • PDF

Effects of anti-corrosion of the Al alloy film by the post-etch treatment (플라즈마 식각후 처리에 의한 Al alloy막의 부식 억제 효과)

  • 김환준;이철인;최현식;권광호;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.413-417
    • /
    • 1997
  • In this study, chlorine(Cl)-based gas chemistry is generally used to etching for AlCu films metallization. The corrosion phenomena of AlCu films were examined with XPS (X-ray photoelectron spectroscopy), SEM (Scanning electron microscopy), and TEM (Transmission electron microscopy). SF$\sub$6/ plasma treatment subsequent to the etch process prevents the corrosion effectively in the pressure of 300 mTorr. It is found that the chlorine atoms on the etched surface are not substituted for fluorine atoms during SF$\sub$6/ treatment, but a passivation layer on the surface by fluorine-related compounds would be formed. The passivation layer prevents the moisture penetration on the SF$\sub$6/ treated surface and suppresses the corrosion successfully.

  • PDF

The Fabrication of a SDB SOI Substrate by Electrochemical Etch-stop (전기화학적 식각정지에 의한 SDB SOI기판의 제작)

  • 정귀상;강경두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.431-436
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method and this process was found to be a very accurate method for SOI thickness control. During electrochemical etch-stop leakage current versus voltage curves were measured for analysis of the open current potential(OCP) point the passivation potential(PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM respectively.

  • PDF

Study on the Blocking Voltage and Leakage Current Characteristic Degradation of the Thyristor due to the Surface Charge in Passivation Material (표면 전하에 의한 Thyristor 소자의 차단전압 및 누설전류특성 연구)

  • Kim Hyoung-Woo;Seo Kil-Soo;Bahng Wook;Kim Ki-Hyun;Kim Nam-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • In high-voltage devices such as thyristor, beveling is mostly used junction termination method to reduce the surface electric field far below the bulk electric field and to expand the depletion region thus that breakdown occurs in the bulk of the device rather than at the surface. However, coating material used to protect the surface of the device contain so many charges which affect the electrical characteristics of the device. And device reliability is also affected by this charge. Therefore, it is needed to analyze the effect of surface charge on electrical characteristics of the device. In this paper, we analyzed the breakdown voltage and leakage current characteristics of the thyristor as a function of the amount of surface charge density. Two dimensional process simulator ATHENA and two-dimensional device simulator ATLAS is used to analyze the surface charge effects.

Investigation on the Effect of Corrosion Inhibitor on Removal Rate and Surface Characteristic of Cobalt Chemical Mechanical Polishing (부식 방지제에 따른 코발트의 화학 기계적 연마 특성 및 표면 분석)

  • Eun Su Jung;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.140-154
    • /
    • 2024
  • As the trend towards miniaturization in semiconductor integration process, the limitations of interconnection metals such as copper, tungsten have become apparent, prompting research into the emergence of new materials like cobalt and emphasizing the importance of studying the corresponding process conditions. During the chemical mechanical polishing (CMP) process, corrosion inhibitors are added to the slurry, forming passivation layers on the cobalt surface, thereby playing a crucial role in controlling the dissolution rate of the metal surface, enhancing both removal rate and selectivity. This review investigates the understanding of the cobalt polishing process and examines the characteristics and behavior of corrosion inhibitors, a type of slurry additive, on the cobalt surface. Among the corrosion inhibitors examined, benzotriazole (BTA), 1,2,4-triazole (TAZ), and potassium oleate (PO) all improved surface characteristics through their interaction with cobalt. These findings provide important guidelines for selecting corrosion inhibitors to optimize CMP processes for cobalt-based semiconductor materials. Future research should explore combinations of various corrosion inhibitors and the development of new compounds to further enhance the efficiency of semiconductor processes.

Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances (기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석)

  • Song, Jun-Yong;Jeong, Dae-Young;Kim, Chan-Seok;Park, Sang-Hyun;Cho, Jun-Sik;Song, Jin-Soo;Wang, Jin-Suk;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.