• Title/Summary/Keyword: Surface Mounting Technology

Search Result 65, Processing Time 0.022 seconds

Effect of Solder Printing Conditions and External Factors on Printing Efficiency (솔더 인쇄조건 및 외적요소가 인쇄효율에 미치는 영향)

  • Ha, Chung-Soo;Kwon, Hyuk-Ku
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2018
  • Under the 4th Industrial Revolution, implementation of Smart Factory in the field of surface mounting is an emerging issue. In the field of surface mounting, many researches are going on in line with these changes. Among them, we analyzed the method of optimizing the solder printing process which is a core process and the influence of the external factors affecting the printing efficiency. In this analysis, the Big Data provided by the SPI Machine was used to approach the statistical method, and the possibility of predicting the result through simulation with reliable results was confirmed. I hope this study contributes a little to the Smart Factory implementation.

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Processing Control of 0402 Chip used Pb-free Solder in SMT process (무연솔더 적용한 0402 칩의 공정제어)

  • Bang, Jeong-Hwan;Lee, Chang-U;Lee, Jong-Hyeon;Kim, Jeong-Han;Nam, Won-U
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.218-221
    • /
    • 2007
  • The surface mounting technology of 0402 electric chip part is necessary to fabricate a high density and multi-functional module, but there is a limitation of the technology, like as a bridge and self-alignement. This work estimated SMT processing factors of 0402 chip. To obtain optimum SMT process, we evaluated effects of stencil thickness, shape of hole on printability and mountability. Printability shows best results under the thickness of $80{mu}m$ with circle hole shape and 90% square hole shape. In case of chip mounting process, chip mis-alignment and bridge was occurred rarely in same conditions. In more thin stencil thickness, $50{mu}m$, strength of 1005 chip parts was poor, because of amount of printed solder was insufficient.

  • PDF

Effects of Forced Self Driving Function in Silicon Wafer Polishing Head on the Planarization of Polished Wafer Surfaces (실리콘 웨이퍼 연마헤드의 강제구동 방식이 웨이퍼 연마 평탄도에 미치는 영향 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • Since the semiconductor manufacturing requires the silicon wafers with extraordinary degree of surface flatness, the surface polishing of wafers from ingot cutting is an important process for deciding surface quality of wafers. The present study introduces the development of wafer polishing equipment and, especially, the wafer polishing head that employs the forced self-driving of installed silicon wafer as well as the wax wafer mounting technique. A series of wafer polishing tests have been carried out to investigate the effects of self-driving function in wafer polishing head. The test results for wafer planarization showed that the LLS counts and SBIR of polished wafer surfaces were generally improved by adopting the self-driven polishing head in wafer polishing stations.

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

Research of Optimum Reflow Process Condition for 0402 Electric Parts (0402칩의 무연솔더링 최적공정 연구)

  • Bang, Jung-Hwan;Lee, Se-Hyung;Shin, Yue-Seon;Kim, Jeong-Han;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.85-89
    • /
    • 2009
  • Reflow process conditions were investigated for 0402 electric parts with Sn-3.0Ag-0.5Cu solders. Circle hole shape metal mask with 100 m thickness showed excellent printability. Self alignment abilities were 71% for 1005 chips, 52% for 0603 chips, and 3% for 0402 chips. Average joining strengos were 1990 gf for 1005 chips, 867 gf for 0603 chips, and 525 gf for 0402 chips. As mis-mounting angle increased, joining strength decreased. Considering self-alignment ability, mounting angle had to be under $5^{\circ}$ and contact area of the chips had to be over 40% for Pb-free soldering process for 0402 chips.

A Study on The Real-Time Processing of The Position Matching and Inspection Algorithm in SMT (SMT에서 정합 및 부품검사 알고리즘의 실시간 처리에 관한 연구)

  • 차국찬;박일수;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.76-84
    • /
    • 1992
  • The vision system is essential for SMT(Surface Mounting Technology) automation. The system plays the role of matching the positions betweem SMD and PCB, and inspecting SMD in the final stage of mounting. Real-time processing and high-precision are indispensable for practical purpose. In this paper, a new algorithm for position matching and inspection of SMD is proposed, and which is implemented on the DSP board using DSP board using DSP5600. Experimental results show mean matching error within 0.1 mm in the direction of x,y and execution time within 300msec. Therefore, we could attain high-speed and high-precision of the vision system for SMT automation.

  • PDF

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

A study on the inspection algorithm of FIC device in chip mounter (칩 마운터에의 FIC 부품 인식에 관한 연구)

  • Lyou, Kyoung;Moon, Yun-Shik;Kim, Kyoung-Min;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.384-391
    • /
    • 1998
  • When a device is mounted on the PCB, it is impossible to have zero defects due to many unpredictable problems. Among these problems, devices with bent corner leads due to mis-handling and which are not placed at a given point measured along the axis are principal problem in SMT(Surface Mounting Technology). It is obvious that given the complexity of the inspection task, the efficiency of a human inspection is questionable. Thus, new technologies for inspection of SMD(Surface Mounting Device) should be explored. An example of such technologies is the Automated Visual Inspection(AVI), wherein the vision system plays a key role to correct this problem. In implementing vision system, high-speed and high-precision are indispensable for practical purposes. In this paper, a new algorithm based on the Radon transform which uses a projection technique to inspect the FIC(Flat Integrated Circuit) device is proposed. The proposed algorithm is compared with other algorithms by measuring the position error(center and angle) and the processing time for the device image, characterized by line scan camera.

  • PDF

Novel NSM configuration for RC column strengthening-A numerical study

  • Gurunandan, M.;Raghavendra, T.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Retrofitting of structures has gained importance over the recent years. Particularly, Reinforced Cement Concrete (RCC) column strengthening has become a challenge to the structural engineers, owing to the risks and complexities involved in it. There are several methods of RCC column strengthening viz. RCC jacketing, steel jacketing and Fiber Reinforced Polymer (FRP) wrapping etc., FRP wrapping is the most promising alternative when compared to the others. The large research database shows FRP wrapping, through lateral confinement, improves the axial load carrying capacity of the columns under concentric loading. However, its confining efficiency reduces under eccentric loading. Hence a relative newer technique called Near Surface Mounting (NSM), in which Carbon FRP (CFRP) strips are epoxy grouted to the precut grooves in the cover concrete of the columns, has been thrust domain of research. NSM technique strengthens the column nominally under concentric load case while significantly under eccentric case. A novel configuration of NSM in which the vertical NSM (VNSM) strips are being connected by horizontal NSM (HNSM) strips was numerically investigated under both concentric and eccentric loading. It was found that the configuration with 6 HNSM strips performed better under eccentric loading than under concentric loading, while the configuration with 3 HNSM strips performed better under concentric loading than under eccentric loading. Hence an optimum of 4 HNSM strips is recommended as strengthening measure for the given column specifications. It was also found that Aluminum alloy cannot be used instead of CFRP in NSM applications owing to its lower mechanical properties.