• 제목/요약/키워드: Surface Measurements

검색결과 3,032건 처리시간 0.033초

Automated Surface Wave Measurements for Evaluating the Depth of Surface-Breaking Cracks in Concrete

  • Kee, Seong-Hoon;Nam, Boohyun
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.307-321
    • /
    • 2015
  • The primary objective of this study is to investigate the feasibility of an innovative surface-mount sensor, made of a piezoelectric disc (PZT sensor), as a consistent source for surface wave velocity and transmission measurements in concrete structures. To this end, one concrete slab with lateral dimensions of 1500 by 1500 mm and a thickness of 200 mm was prepared in the laboratory. The concrete slab had a notch-type, surface-breaking crack at its center, with depths increasing from 0 to 100 mm at stepwise intervals of 10 mm. A PZT sensor was attached to the concrete surface and used to generate incident surface waves for surface wave measurements. Two accelerometers were used to measure the surface waves. Signals generated by the PZT sensors show a broad bandwidth with a center frequency around 40 kHz, and very good signal consistency in the frequency range from 0 to 100 kHz. Furthermore, repeatability of the surface wave velocity and transmission measurements is significantly improved compared to that obtained using manual impact sources. In addition, the PZT sensors are demonstrated to be effective for monitoring an actual surface-breaking crack in a concrete beam specimen subjected to various external loadings (compressive and flexural loading with stepwise increases). The findings in this study demonstrate that the surface mount sensor has great potential as a consistent source for surface wave velocity and transmission measurements for automated health monitoring of concrete structures.

3D 스캔데이터를 활용한 동작에 따른 하반신 주요 부위별 체표면 변화 및 상관관계 - 20-24세 여성을 중심으로 - (Identification of the Relationship between Surface Variations of Lower Body Parts by Movement Using 3D Scan Data - A Focus on Women Aged 20 to 24 Years -)

  • 이소영;김지민
    • 복식
    • /
    • 제67권3호
    • /
    • pp.81-98
    • /
    • 2017
  • The purpose of this study is to provide basic information for the development of pants patterns with a high level of fit and comfort through calculating surface variations of lower body parts by movement, grouping them into factors, and analyzing how their surface variations link to one another. The achieved results will help determine essential elements for constructing pants patterns, such as key measurements of lower body parts, the amount of ease values and selection of fabrics, which should be taken into consideration for allowing better movement in clothing. The study required lower body 3D scanning of women for analysis, and 13 women between the ages of 20-24 participated in the scanning, which was done by using Artec Eva 3D scanner. Their scanned data were digitalized and converted to measure the values of their lower body surface length and girth in pre-determined positions such as walking, stair climbing and sitting on a chair. These measurements have been statistically analyzed through SPSS 21.0 to obtain the average amounts and rates of extension for each of the measurement item. Some of the highlighted study results are as follows: The surface length and girth measurements were grouped into 4 factors based on their average extension rates. The results from correlation analysis between measurement items within each factor demonstrated that common items linked to all the changes in the values of other items in the three movements. But in most cases, items were not always correlated with each other for different movements. The results also showed that there were correlations between girth measurements, length measurements, and girth and length measurements. Therefore, key measurements for daily pants should be determined within reasonable estimations between relevant measurement items, while the measurements for work pants, which often withstand certain postures or repetitive movements, may require measurement items that are appro priate for, and closely related to, certain movements or tasks.

Changes in Back Body Surface Measurements for Dynamic Postures in the Form of Baseball Batting Motion with a 3D body Scanning

  • Shin, Saemi;Chun, Jongsuk
    • International Journal of Human Ecology
    • /
    • 제14권1호
    • /
    • pp.41-55
    • /
    • 2013
  • The purpose of this study was to analyze human upper body surface changes at the shoulder and back area. The body surface data were analyzed in terms of muscle and bone displacement in dynamic postures. Body surface data were collected with a 3D body scanner. The body surface was scanned at the static and four baseball batting postures. The body surface dimensions over the deltoids, scapulae and trapezius were measured. The results show that the vertical measurements of the deltoids increased by 20%. The horizontal measurements of the axilla of the back increased. The surface of the trapezius was elongated by over 10%, and the lower back musculature was elongated by about 50%. The results of this study showed that changes in back body surface caused by upper arm movements. It was influenced by the deltoid articulated with the humeri and the scapulae and trapezius. These body surface changes caused by muscle activities and ranges of motion can be used to design functional clothing.

Spatial and Temporal Assessment of Particulate Matter Using AOD Data from MODIS and Surface Measurements in the Ambient Air of Colombia

  • Luna, Marco Andres Guevara;Luna, Fredy Alejandro Guevara;Espinosa, Juan Felipe Mendez;Ceron, Luis Carlos Belalcazar
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권2호
    • /
    • pp.165-177
    • /
    • 2018
  • Particulate matter (PM) measurements are important in air quality, public health, epidemiological studies and decision making for short and long-term policies implementation. However, only few cities in the word have advance air quality-monitoring networks able to provide reliable information of PM leaves in the ambient air, trends and extent of the pollution. In Colombia, only major cities measure PM concentrations. Available measurements from Bogota, Medellin and Bucaramanga show that PM concentration are well above World Health Organization guidelines, but up to now levels and trends of PM in other cities and regions of the country are not well known. Satellite measurements serve as an alternative approach to study air quality in regions were surface measurements are not available. The aim of this study is to perform a spatial and temporal assessment of PM in the ambient air of Colombia. We used Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite of NASA and surface measurements from the air quality networks of Bogota, Medellin and Bucaramanga. In a first step, we estimated the correlation between MODIS-AOD and monthly average surface measurements (2000 to 2015) from these three cities, obtaining correlation coefficient R values over 0.4 for the cities under study. After, we used AOD and $PM_{10}$ measurements to study the temporal evolution of PM in different cities and regions. Finally, we used AOD measurements to identify cities and regions with the highest AOD levels in Colombia. All the methods presented in this paper may serve as an example for other countries or regions to identify and prioritize locations that require the implementation of more accurate air quality measurements.

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja;Huh, Kyung-Hoe;YI, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제42권1호
    • /
    • pp.25-33
    • /
    • 2012
  • Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

The Effect of Surface Meteorological Measurements on High-precision GPS Positing Determination

  • Wang, Chuan-Sheng;Liou, Yuei-An
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.625-627
    • /
    • 2003
  • In this study, the Global Positioning System (GPS) data collected by the GPS receivers that were established as continuously operating reference stations by Central Weather Bureau and Industrial Technology Research Institute of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the baseline length on the proposed impact study, four baselines are considered according to the locations of the permanent GPS sites. The length of the shorter baseline is about 66km, while the longer is about 118 km. The results from the studies associated with different baseline lengths and ellipsoid height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on 66 days measurements is that the surface meteorological measurements have a significant impact on the positioning determination for the longer baseline case. The associated daily maximum differences are 1.1 cm and 1.4 cm for the baseline and ellipsoid height respectively. The corresponding biases are -8.1 mm in length and -7.3 mm in el lipsoid height.

  • PDF

Effect of Ar ion Sputtering on the Surface Electronic Structure of Indium Tin Oxide

  • Lee, Hyunbok;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.128-132
    • /
    • 2016
  • We investigated the effect of Ar ion sputtering on the surface electronic structure of indium tin oxide (ITO) using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements with increasing Ar ion sputtering time. XPS measurements revealed that surface contamination on ITO was rapidly removed by Ar ion sputtering for 10 s. UPS measurements showed that the work function of ITO increased by 0.2 eV after Ar ion sputtering for 10 s. This increase in work function was attributed to the removal of surface contamination, which formed a positive interface dipole relative to the ITO substrate. However, further Ar ion sputtering did not change the work function of ITO although the surface stoichiometry of ITO did change. Therefore, removing the surface contamination is critical for increasing the work function of ITO, and Ar ion sputtering for a short time (about 10 s) can efficiently remove surface contamination.

Roughness Measurement Performance Obtained with Optical Interferometry and Stylus Method

  • Rhee Hyug-Gyo;Lee Yun-Woo;Lee In-Won;Vorburger Theodore V.
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.48-54
    • /
    • 2006
  • White-light scanning interferometry (WLI) and phase shifting interferometry (PSI) are increasingly used for surface topography measurements, particularly for areal measurements. In this paper, we compare surface profiling results obtained from above two optical methods with those obtained from stylus instruments. For moderately rough surfaces ($Ra{\approx}500\;nm$), roughness measurements obtained with WLI and the stylus method seem to provide close agreement on the same roughness samples. For surface roughness measurements in the 50 nm to 300 nm range of Ra, discrepancies between WLI and the stylus method are observed. In some cases the discrepancy is as large as 109% of the value obtained with the stylus method. By contrast, the PSI results are in good agreement with those of the stylus technique.