Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwon-Kyu;Kim, Dong-Su
Journal of Environmental Science International
/
v.22
no.5
/
pp.581-589
/
2013
Surface Image Velocimetry(SIV) is an instrument to measure water surface velocity by using image processing techniques. Since SIV is a non-contact type measurement method, it is very effective and useful to measure water surface velocity for steep mountainous streams, such as streams in Jeju island. In the present study, a surface imaging velocimetry system was used to calculate the flow rate for flood event due to a typhoon. At the same time, two types of electromagnetic surface velocimetries (electromagnetic surface current meter and Kalesto) were used to observe flow velocities and compare the accuracies of each instrument. The comparison showed that for velocity distributions root mean square error(RMSE) was 0.33 and R-squared was 0.72. For discharge measurements, root mean square error(RMSE) reached 6.04 and R-squared did 0.92. It means that surface image velocimetry could be used as an alternative method for electromagnetic surface velocimetries in measuring flood discharge.
Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwonkyu;Kim, Dong-Su
Journal of Environmental Science International
/
v.24
no.4
/
pp.359-369
/
2015
This study analyzed the velocimetry of runoff and measured the flood discharge by applying the SIV (Surface Image Velocimetrer) to the daytime and nighttime flow image data with special reference to Seong-eup Bridge at Cheonmi stream of Jeju during the flow by the severe rainstorm on May 27, 2013. A 1000W lighting apparatus with more than 150 lux was installed in order to collect proper nighttime flow image applied to the SIV. Its value was compared and analyzed with the velocity value of the fixed electromagnetic wave surface velocimetry (Kalesto) at the same point to check the accuracy and applicability of the measured velocity of flow. As a result, determination coefficient $R^2$ values were 0.891 and 0.848 respectively in line with the velocity distribution of the daytime and nighttime image and the flow volume measured with Kalesto was approximately 18.2% larger than the value measured with the SIV.
LSPIV(Large Scale Particle Image Velocimetry) is widely used in the field of civil and environmental engineering. General aspects of LSPIV are introduced and several applications are introduced in this paper. The difference of LSPIV from the conventional PIV techniques is not to use models for experiments but to use the flow fields in nature. For LSPIV a converting process for the captured images is necessary.
The surface image velocimetry was developed to measure river flow velocity safely and effectively in flood season. There are a couple of methods in the surface image velocimetry. Among them the spatio-temporal image velocimetry is in the spotlight, since it can estimate mean velocity for a period of time. For the spatio-temporal image velocimetry analyzes a series of images all at once, it can reduce analyzing time so much. It, however, has a little drawback to find out the main flow direction. If the direction of spatio-temporal image does not coincide to the main flow direction, it may cause singnificant error in velocity. The present study aims to propose a new method to find out the main flow direction by using a fast Fourier transform(FFT) to a spatio-temporal (image) volume, which were constructed by accumulating the river surface images along the time direction. The method consists of two steps; the first step for finding main flow direction in space image and the second step for calculating the velocity magnitude in main flow direction in spatio-temporal image. In the first step a time-accumulated image was made from the spatio-temporal volume along the time direction. We analyzed this time-accumulated image by using FFT and figured out the main flow direction from the transformed image. Then a spatio-temporal image in main flow direction was extracted from the spatio-temporal volume. Once again, the spatio-temporal image was analyzed by FFT and velocity magnitudes were calculated from the transformed image. The proposed method was applied to a series of artificial images for error analysis. It was shown that the proposed method could analyze two-dimensional flow field with fairly good accuracy.
In this study, a technique for estimating water surface velocity fields in the Universal Transverse Mercator coordinate system using the GPS information of a propagating drone but not ground control points is developed. First, we determine the image direction in which the upper side of an image is directed based on the navigation information of the drone. Subsequently, we assign the start and end frames of the video used and determine the analysis range. Using these two frames, we segment the measurement cross-section into a few subsections at regular intervals. At these subsections, we analyze 30 frame images to create spatio-temporal volumes for calculating the velocity fields. The results of the developed method (propagating drone surface image velocimetry) are compared with those of the existing method (hovering drone surface image velocimetry), and relatively good agreement is indicated between both in terms of the velocity fields.
International Journal of Naval Architecture and Ocean Engineering
/
v.5
no.3
/
pp.404-413
/
2013
In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.
Surface Image Velocimetry (SIV) is an instrument to measure water surface velocity by using image processing techniques. To improve its measuring accuracy, it is essential to get high quality images with low skewness. A truck-mounted SIV system would be a good way to get images, since its crane gives high altitude to the images. However, the images taken with a truck-mounted SIV would be swayed due to the movement of crane and the camera by winds. In that case, to analyze the images, it is necessary to compensate the side sway in the images. The present study is to develop an algorithm to analyze the swayed images by combining common image processing techniques and coordinate transform techniques. The system follows the traces of some selected fixed points and calculates the displacements of the video camera. By subtracting the average velocity of the fixed points from that of grid points, the velocity fields of the flow can be corrected. To evaluate the system's performance, two image sets were used, one image set without side sway and another set with side sway. The comparison of their results showed very close with the error of around 6 %.
Kim, Seo-Joon;Joo, Yong-Woo;Yu, Kwon-Kyu;Yoon, Byung-Man
한국방재학회:학술대회논문집
/
2008.02a
/
pp.739-742
/
2008
Surface Image Velocity (SIV) is a technique which measures the surface velocity of river by using the principle of Paticle Image Velocimetry (PIV). The technique is economical and efficient way to measure velocity in rivers. The present paper aims to apply the technique to three rivers in Korea. It uses pairs of river surface images taken with two digital-cameras and reference points and cross section data which were acquired through plane survey. The performance of SIV was verified with automatic cart on an experimental flume. The test revealed that average error was less than 10 %, which assures that SIV can be used to measure velocity accurately. When it was applied to rivers with low water levels or rough weather condition, however, it showed the error about 20 %. If the problems of SIV technique are settled down, it can be one of the most convenient and economical ways to measure water discharge anytime and anywhere. And then it would be helpful to river management as developing a real-time river information system.
This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.
Journal of Advanced Marine Engineering and Technology
/
v.29
no.4
/
pp.453-460
/
2005
Experiments were conducted to investigate the effect of the surface roughness on the flat plate turbulent boundary layer. The square rods were installed at the leading edge to make surface roughness. The particle image velocimetry was used to measure the mean velocities and velocity fluctuation component. All measurements were made over a range of w/k=1. 2 5 and $Re_x=80.000{\sim}360,000$. Friction velocity was measured by using Clauser plot method. The level of turbulent intensities on roughness surface appears more strongly than that of turbulent intensities on flat plate. A correlation of boundary layer thickness in term of $Re_x$ and w/k are presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.