• Title/Summary/Keyword: Surface Currents

Search Result 577, Processing Time 0.03 seconds

Current Conservation Factors for Consistent One-Dimensional Neutronics Modeling

  • Lee, Kibog;Joo, Han-Gyu;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A one-dimensional neutronics formulation is established within the framework of the nonlinear analytic nodal method such that it can result in consistent one-dimensional models that produce the same axial information as their corresponding reference three-dimension81 models. Consistency is achieved by conserving axial interface currents as well as the planar reaction rates of the three-dimensional case. For current conservation, flux discontinuity is introduced in the solution of the two-node problem. The degree of discontinuity, named the current conservation factor, is determined such that the surface averaged axial current of the reference three-dimensional case can be retrieved from the two-node calculation involving the radially collapsed group constants and the discontinuity factor. The current conservation factors are derived from the analytic nodal method and various core configurations are analyzed to show that the errors in K-eff and power distributions can be reduced by a order of magnitude by the use of the current conservation factor with no significant computational overhead.

  • PDF

A New Approach for the Solution of Multi-Dimensional Neutron Kinetics Equations in LWR's (경수로에 대한 다차원 노심 동특성 방정식의 해를 구하기 위한 새로운 방법 개발)

  • Song, Jae-Woong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.252-262
    • /
    • 1992
  • The intent of this study is to develop an efficient calculation method which can be used to analyze the heterogeneous time-dependent reactor problems. By using the nodal theory one can not only reduce the calculational efforts, but accurately determine the group dependent flux densities averaged over the entire homogeneous nodes. This method uses correction factors(called“discontinuity factors”) in a rigorous manner to obtain the relationship between the node-averaged flux and the surface-averaged fluxes and currents. The discontinuity factors are calculated from the node-averaged fluxes, diffusion coefficients, and the discontinuity factors of the previous time step. The test results for two benchmark problems demonstrate the accuracy and efficiency of the method developed for the transient application in which assembly-size nodes can be used.

  • PDF

Fabrication of the Two-Step Crystallized Polycrystalline Silicon Thin Film Transistors with the Novel Device Structure (두 단계 열처리 방법으로 결정화된 새로운 구조의 다결정 실리콘 박막 트렌지스터의 제작)

  • Choi, Yong-Won;Wook, Hwang-Han;Kim, Yong-Sang;Kim, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1772-1775
    • /
    • 2000
  • We have fabricated poly-Si TFTs by two-step crystallizaton. Poly-Si films have been prepared by furnace annealing(FA) and rapid thermal annealing(RTA) followed by subsequent the post-annealing, excimer laser annealing. The measured crystallinity of RTA and FA annealed poly-Si film is 77% and 68.5%, respectively. For two-step annealed poly-Si film, the crystallinity has been drastically to 87.7% and 86.3%. The RMS surface roughness from AFM results have been improved from 56.3${\AA}$ to 33.5${\AA}$ after post annealing. The measured transfer characteristics of the two-step annealed poly-Si TFTs have been improved significantly for the both FA-ELA and RTA-ELA. Leakage currents of two-step annealed poly-Si TFTs are lower than that of the devices by FA and RTA. From these results, we can describe the fact that the intra-grain defects has been cured drastically by the post-annealing.

  • PDF

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

An Algorithm for Computing Eigen Current of Forward Model of Mammography Geometry for EIT (매모그램 구조의 전기저항 영상법에서 정방향 모델의 고유전류 계산 알고리즘)

  • Choi, Myoung Hwan
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.91-96
    • /
    • 2007
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present standard for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. A forward model of a simplified mammography geometry for EIT imaging was proposed earlier. In this paper, we propose an iterative algorithm for computing the current pattern that will be applied to the electrodes. The current pattern applied to the electrodes influences the voltages measured on the electrodes. Since the measured voltage data is going to be used in the impedance imaging computation, it is desirable to apply currents that result in the largest possible voltage signal. We compute the eigenfunctions for a homogenous medium that will be applied as current patterns to the electrodes. The algorithm for the computation of the eigenfunctions is presented. The convergence of the algorithm is shown by computing the eigencurrent of the simplified mammography geometry.

  • PDF

Study on the FEA Model of the Linear Pulse Motor for Railway Application and Reduction of Thrust Ripple (철도차량 추진용 Linear Pulse Motor의 축소 모델 해석 및 추력 리플 저감 연구)

  • Seol, Hyun-Soo;Lee, Gang-Seok;Jeong, Geochul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.981-987
    • /
    • 2017
  • In this paper, we describe the LPM structure with a two-phase, which is not used previously, and explain its operation principle. In order to predict the accurate performance of LPM reduction model, finite element model was derived and the back EMF of LPM reduction model was measured and compared. In order to investigate the thrust and normal force of the LPM reduction model, a driving circuit capable of applying two-phase pulse currents was constructed and the performance was predicted in conjunction with the finite element analysis model. Finally, the design considering actual LPM size was performed. Since the size of the reduction model is small, the field could be made of a permanent magnet. However, it is almost impossible to manufacture a permanent magnet to match the size and capacity of a real LPM for a vehicle, in terms of cost and writing. Therefore, the actual vehicle LPM was replaced by wound type that generates a magnetic field by applying current to the field winding, and the final model was derived using the reaction surface method.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films (하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석)

  • Bae, Soo Hyun;Yoon, So-Jung;Min, Dae-Hong;Yoon, Sung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.433-438
    • /
    • 2020
  • To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.

Vector Control Implementation of PMSM Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 영구자석 동기전동기 벡터제어 구현)

  • Lee, Yong-Seok;Lee, Dong-Min;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1084-1085
    • /
    • 2007
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy. In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. The PI controller is used for speed control and state feedback PI current control method is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Simulations and experiments were carried out to examine validity of the proposed vector control implementation.

  • PDF

Efficiency Assessment of Turbine for Tidal Current Power Plant by In-Field Experimental Test (현장계측에 의한 조류 발전용 수차의 효율 평가)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dai;Park, Woo-Sun;Park, Jin-Soon;Yi, Jin-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.517-520
    • /
    • 2006
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides results in strong tidal current. The kinetic energy of these currents can be efficiently exploited by use of tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok narrow channel between J info and Haenam, Our ins next Year, and extensive coastal engineer ing research works have been carried out. This paper describes and analyzes some observation results of field test about the efficiency of Helical turbine for tidal current power plant. The efficiency of turbine, which is diameter 2.2m and height 2.5m, is evaluated meximum RPM, torque, and current velocity. The tested turbines had the maximum efficiencies of the bounds of 25 to 35% in the current velocity range between 1.4 and 2.6 m/s. This result shows that the pilot tidal current power plant needs three helical turbines with diameter 3.0m and height 3.6m to produce electric power 500kW.

  • PDF