• 제목/요약/키워드: Surface Alloying

검색결과 231건 처리시간 0.03초

Manufacturing Techniques and Alloying Compositions of Metal Decorative Artifacts in 18th Century, Myanmar

  • Lee, Jae Sung;Win, Yee Yee;Lee, Bonnie;Yu, Jae Eun
    • 보존과학회지
    • /
    • 제36권4호
    • /
    • pp.296-305
    • /
    • 2020
  • Konbaung Dynasty was the last unified dynasty that ruled Myanmar from 18th to 19th century. During this time Buddhist art flourished in Myanmar due to the interest of the rulers toward their traditional culture. Metal decorative artifacts in the 18th century are classified into structures and Buddha statues. They are further subdivided into gilt-bronze and bronze objects, depending on their material component. Three-dimensional gilt-bronze decorative artifacts were cast with a brass alloy of Cu-Zn-Sn-Pb and their surfaces were gilded with extremely thin gold leaves (less than 1 ㎛ in thickness). The gilded layer approximately comprised 10 wt% silver in addition to the main element, gold. The lack of Hg in the gilded layer, indicated that the amalgam gilding technique was not applied. The analysis results indicated that the lacquered gilding technique was applied to the objects. Bronze decorative artifacts without gilding were cast with materials containing Cu-Sn-Pb. The bronze pavilions and bronze Buddha staues were crafted using the same alloy of high-tin bronze, which approximately contained 20 wt% Sn. No heat treatment was applied to reduce the brittleness of the objects after they were cast with a large amount of Sn. The most significant difference between the gilt-bronze and bronze decorative artifacts lie in their elemental compositions. The gilt-bronze decorative artifacts with their gilded surface were manufactured using brass containing zinc, while the unplated bronze decorative artifacts were composed of bronze containing tin. Artifacts of the same type and size are classified differently depending on the materials utilized in the surface treatment such as gilding.

후열처리에 따른 Cu-NiCrBSi 이종 레이저 클래드부의 미세조직 및 기계적 성질 변화 (Effect of Post-clad Heat Treatment on Microstructures and Mechanical Properties of Cu-NiCrBSi Dissimilar Laser Clads)

  • 김경민;정예선;심아진;박원아;박창규;천은준
    • 한국재료학회지
    • /
    • 제30권9호
    • /
    • pp.465-473
    • /
    • 2020
  • For surface hardening of a continuous casting mold component, a fundamental metallurgical investigation on dissimilar laser clads (Cu-NiCrBSi) is performed. In particular, variation behavior of microstructures and mechanical properties (hardness and wear resistance) of dissimilar clads during long-term service is clarified by performing high-temperature post-clad heat treatment (temperature range: 500 ~ 1,000 ℃ and isothermal holding time: 20 ~ 500 min). The microstructures of clad metals (as-clads) consist of fine dendrite morphologies and severe microsegregations of the alloying elements (Cr and Si); substrate material (Cu) is clearly confirmed. During the post-clad heat treatment, the microsegregations are totally homogenized, and secondary phases (Cr-based borides and carbides) precipitated during the short-term heat treatment are also almost dissolved, especially at the heat treatment conditions of 950 ℃ for 500 min. Owing to these microstructural homogenization behaviors, an opposite tendency of the surface mechanical properties can be confirmed. In other words, the wear resistance (wear rate) improves from 4.1 × 10-2 ㎣/Nm (as-clad condition) to 1.4 × 10-2 ㎣/Nm (heat-treated at 950 ℃ for 500 min), whereas the hardness decreases from 453 HV (as-clad condition) to 142 HV (heat-treated at 950 ℃ for 500 min).

구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo (Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum)

  • 방웅호;강춘식;박재현;권영각
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향 (Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells)

  • 윤홍관;김다희;김천중;김용진;민지호;정남기
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

논시안 금도금층의 조직과 경도에 미치는 Tl+ 과 Pd2+ 이온첨가의 영향 (Effect of addition of Tl+ and Pd2+ on the texture and hardness of the non-cyanide gold plating layer)

  • 허원영;손인준
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.460-468
    • /
    • 2022
  • Due to its high electrical conductivity, low contact resistance, good weldability and high corrosion resi-stance, gold is widely used in electronic components such as connectors and printed circuit boards (PCB). Gold ion salts currently used in gold plating are largely cyan-based salts and non-cyanic salts. The cya-nide bath can be used for both high and low hardness, but the non-cyanide bath can be used for low hardness plating. Potassium gold cyanide (KAu(CN)2) as a cyanide type and sodium gold sulfite (Na3[Au(SO)3]2) salt as a non-cyanide type are most widely used. Although the cyan bath has excellent performance in plating, potassium gold cyanide (KAu(CN)2) used in the cyan bath is classified as a poison and a toxic substance and has strong toxicity, which tends to damage the positive photoresist film and make it difficult to form a straight side-wall. There is a need to supplement this. Therefore, it is intended to supplement this with an eco-friendly process using sodium sulfite sodium salt that does not contain cyan. Therefore, the main goal is to form a gold plating layer with a controllable hardness using a non-cyanide gold plating solution. In this study, the composition of a non-cyanide gold plating solution that maintains hardness even after annealing is generated through gold-palladium alloying by adding thallium, a crystal regulator among electrolysis factors affecting the structure and hardness, and changes in plating layer structure and crystallinity before and after annealing the correlation with the hardness.

$Bi_{2}Se_{3}$ 함량에 따른 Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ (Thermoelectric Properties of the Hot-Pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ Alloys with the $Bi_{2}Se_{3}$ Content)

  • 김희정;오태성;현도빈
    • 한국재료학회지
    • /
    • 제8권5호
    • /
    • pp.408-412
    • /
    • 1998
  • Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$(0.05$\leq$x$\leq$0.25)합금분말을 기계적 합금화 공정으로 제조하여 가압소결 후, $Bi_{2}$Se$_{3}$함량에 따른 열전특성의 변화거동을 분석하였다. 기계적 합금화로 제조한 $ Bi_{2}$(Te$_{1-x}$ $Se_{x}$$_{3}$ 가압소결체는 단결정과는 달리 donor dopant의 첨가없이도 n형 전도를 나타내었다. $Bi_2(Te_{0.85}Se_{0.15})_3$ 합금분말을 (50%H$_{2}$+50% Ar)분위기 중에서 환원처리하여 가압소결시, 분말 효면의 산화층 제거와 과잉 Te 공격자의 소멸에 기인한 전자 농도의 감소로 p형으로 천이되었다. 기계적 합금화로 제조한 $ Bi_{2}$($Te_{1-x}$ $Se_{x}$$_{3}$가압소결체는 x=0.15조성에서 $1.92{\times}10^{-3}$ K의 최대 성능지수를 나타내었다.

  • PDF

Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가 (Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites)

  • 신효원;황준현;김은아;홍태환
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.107-114
    • /
    • 2021
  • Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 합성 공정에 대한 환경 영향 특성을 분석하기 위해 물질전과정평가(material life cycle assessment, MLCA)를 수행하였다. MLCA는 Gabi 소프트웨어를 사용하였으며, Eco-Indicator 99' (EI99)와 CML 2001 방법론을 기반으로 하여 분석하였다. Mg2NiHx-5 wt% CaO 복합재료는 수소 가압형 기계적 합금화법(hydrogen induced mechanical alloying, HIMA)에 의해 합성되었다. X-선 회절분석기(X-ray diffraction, XRD), 주사전자현미경(scanning electron microscopy, SEM), 에너지 분산형 X-선 분광법(energy dispersive X-ray spectroscopy, EDS), 비표면적 분석(Bruner-Emmett-Teller, BET), 열중량 분석(thermogravimetric analysis, TGA)을 이용하여 복합재료의 야금학적, 열화학적 특성을 분석하였다. CML 2001 및 EI99 방법론을 토대로 MLCA를 수행하여 분석한 정규화 결과, Mg2NiHx-5 wt% CaO 복합재료는 지구온난화(GWP)와 화석연료의 환경 부하 값에서 가장 높은 수치를 나타내었다. 이는 CaO 첨가에 따른 제조 공정에서의 추가적인 전기 사용으로 인한 것으로 판단된다. 따라서 향후 합금 설계 시에 제조 공정 시간 단축을 통한 공정 최적화 및 친환경적인 대체물질을 탐구하여 환경적인 요인을 고려한 연구를 모색해 볼 필요가 있다.

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A.;Khorkounov, B.;Schultz, L.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.327-335
    • /
    • 2006
  • In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.