DOI QR코드

DOI QR Code

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites

Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가

  • Shin, Hyo-Won (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • Hwang, June-Hyeon (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • Kim, Eun-A (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • Hong, Tae-Whan (Department of Materials Science & Engineering, Korea National University of Transportation)
  • 신효원 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 황준현 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 김은아 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • Received : 2021.05.04
  • Accepted : 2021.06.10
  • Published : 2021.06.30

Abstract

Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 합성 공정에 대한 환경 영향 특성을 분석하기 위해 물질전과정평가(material life cycle assessment, MLCA)를 수행하였다. MLCA는 Gabi 소프트웨어를 사용하였으며, Eco-Indicator 99' (EI99)와 CML 2001 방법론을 기반으로 하여 분석하였다. Mg2NiHx-5 wt% CaO 복합재료는 수소 가압형 기계적 합금화법(hydrogen induced mechanical alloying, HIMA)에 의해 합성되었다. X-선 회절분석기(X-ray diffraction, XRD), 주사전자현미경(scanning electron microscopy, SEM), 에너지 분산형 X-선 분광법(energy dispersive X-ray spectroscopy, EDS), 비표면적 분석(Bruner-Emmett-Teller, BET), 열중량 분석(thermogravimetric analysis, TGA)을 이용하여 복합재료의 야금학적, 열화학적 특성을 분석하였다. CML 2001 및 EI99 방법론을 토대로 MLCA를 수행하여 분석한 정규화 결과, Mg2NiHx-5 wt% CaO 복합재료는 지구온난화(GWP)와 화석연료의 환경 부하 값에서 가장 높은 수치를 나타내었다. 이는 CaO 첨가에 따른 제조 공정에서의 추가적인 전기 사용으로 인한 것으로 판단된다. 따라서 향후 합금 설계 시에 제조 공정 시간 단축을 통한 공정 최적화 및 친환경적인 대체물질을 탐구하여 환경적인 요인을 고려한 연구를 모색해 볼 필요가 있다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(2019R1F1A1041405)와 교육부에서 지원하는 한국기초과학연구원 보조금(2019R1A6C1010047)과 중소벤처기업부가 부여한 재원(S3045542)에 의해 수행되었으며, 이에 감사드립니다.

References

  1. Kim, H. M., Oh, H. S., and Ryu, S. H., "A Study on the Passive House Technology Application of University Dormitory through The House at Cornell Tech," The Journal of Korean Institute of Educational Facilities, 25(4), 11-18 (2018). https://doi.org/10.7859/KIEF.2018.25.4.011
  2. International Energy Agency (IEA), "World Energy Outlook 2020," Paris (2020).
  3. Hwang, I. C., Kim, K. U., Baek, J. R., and Son, W. I., "Long-term Strategy and Sectoral Approaches of Seoul for Achieving Carbon Neutrality by 2050," The Seoul Institute, Report 1-162 (2020).
  4. Grimes, C. A., Varghese, O. K., and Ranjan. S., "Hydrogen Generation by Water Splitting," Light, Water, Hydrogen., Springer, Boston, MA, 35-113 (2008).
  5. Goswami, D. Y., and Kreith, F., "ENERGY CONVERSION," CRC Press, 2.1-2.21 (2007).
  6. Lee, S. G., Lee, J. H., and Park, J. S., "Hydrogen Storage Technology for Vehicles," Hydrogen Information, 7, 1-14 (2005).
  7. Lewis, F. A., and Alsdjem, A., "Hydrogen Metal System I," SCITEC PUB, Zuerich, 37-54 (1996).
  8. Song, G. S., "Hydrogen Storage Alloy Technology Development Trend," KEITI, Konetic Report No. 99 (2016).
  9. US Department of Energy, Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (2014).
  10. Ordaz, G., Petrovic, J., Read, C., Thomas, G., and Satyapal, S., "Vehicular Hydrogen Storage: Goals, Challenges, and Progress," AIChE Spring Metting and Global Congress on Process Safety, Orlando, FL (2006).
  11. Schlapbach, L., and Andreas Z., "Hydrogen-storage Materials for Mobile Applications," Nature., 414, 353-358 (2001). https://doi.org/10.1038/35104634
  12. Cardella, U., Decker, L., Sundberg, J., and Klein, H., "Process Optimization for Large-Scale Hydrogen Liquefaction," Int. J. Hydrog. Energy, 42(17), 12339-12354 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.167
  13. Cardella, U., Decker, L., and Klein, H., "Roadmap to Economically Viable Hydrogen Liquefaction," Int. J. Hydrog. Energy, 42(19), 13329-13338 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.068
  14. Sadaghiani, M. S., Mehrpooya, M., and Ansarinasab, H., "Process Development and Exergy Cost Sensitivity Analysis of a Novel Hydrogen Liquefaction Process," Int. J. Hydrog. Energy, 42(50), 29797-29819 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.124
  15. Zuttel, A., "Materials for Hydrogen Storage," Materials today, 6(9), 24-33 (2003). https://doi.org/10.1016/S1369-7021(03)00922-2
  16. Kirchheim, R., Mutschele, T., Kieninger, W., Gleiter, H., Birringer, R., and Koble, T, D., "Hydrogen in Amorphous and Nanocrystalline Metals," Mater. Sci. Eng., 99(1-2), 457-462 (1988). https://doi.org/10.1016/0025-5416(88)90377-1
  17. Singh, A. K., Singh, A. K., and Srivastava, O. N., "On the Synthesis of the Mg2Ni Alloy by Mechanical Alloying," J. Alloy. Compd., 227(1), 63-68 (1995). https://doi.org/10.1016/0925-8388(95)01625-2
  18. Zaluski, L., Zaluska, A., and Strom-Olsen, J. O., "Nanocrystalline Metal Hydrides," J. Alloy. Compd., 253-254, 70-79 (1997). https://doi.org/10.1016/S0925-8388(96)02985-4
  19. Iwakura, C., Nohara, S., Zhang, S. G., and Inoue, H., "Hydriding and Dehydriding Characteristics of an Amorphous Mg2Ni-Ni Composite," J. Alloy. Compd., 285(1-2), 246-249 (1999). https://doi.org/10.1016/S0925-8388(98)00966-9
  20. Reilly, J. J., Jr., and Wiswall, R. H., Jr., "Reaction of Hydrogen With Alloys of Magnesium and Nickel and the Formation of Mg2NiH4," Inorg. Chem., 7(11), 2254-2256 (1968). https://doi.org/10.1021/ic50069a016
  21. Lee, S. H., and Jo, Y. M., "Review of National Policies on the Utilization of Waste Metal Resources," KIC News, 13(1), 2-9 (2010).
  22. Lee, S. S., Lee, N. R., Kim, K. I., and Hong, T. W., "Environmental Impacts Assessment of ITO (Indium Tin Oxide) Using Material Life Cycle Assessment," Clean Technol., 18(1), 69-75 (2012). https://doi.org/10.7464/ksct.2012.18.1.069
  23. Hong, T. W., Lim, J. W., Kim, S. K., Kim, Y. J., and Park, H. S., "Formation of Mg2NiHx Hydrogen Absorbing Materials by Hydrogen Induced Mechanical Alloying," J. Kor. Inst. Met. Mater., 37(3), 369-376 (1999).
  24. Jung, M. W., Park, J. H., Cho, K. W., Kim, K. I., Chol, J. H., Kim, S. H., and Hong, T. W., "Hydrogenation Properties of MgHx-V2O5 Composites by Hydrogen Induced Mechanical Alloying," Trans. Korean Hydro. and New Energy Soc., 21(1), 58-63 (2010).
  25. Hong, T. W., Lim, J. W., Kim, S. K., Kim, Y. J., and Park, H. S., "Effect of Atmospheric Hydrogen Pressure on Mg2NiHx synthesis," J. of the Korean Hydrogen Energy Society, 10(1), 27-40 (1999).
  26. Huang, Z. G., Guo, Z. P., Calka, A., Wexler, D., Lukey, C., and Liu, H. K., "Effects of Iron Oxide (Fe2O3, Fe3O4) on Hydrogen Storage Properties of Mg-based Composites," J. Alloys Compd., 422(1-2), 299-304 (2006). https://doi.org/10.1016/j.jallcom.2005.11.074
  27. Fernadez Samuel, A. M., Rao, M., and Srivastava, O. N., "The Structural Behaviour and Physical Properties of Some MX2 (Cdl2 type) Layered Crystals," Progress in Crystal Growth and Characterization of Materials, 7(1-4), 391-450 (1983). https://doi.org/10.1016/0146-3535(83)90038-2
  28. Dvornik, M., and Mikhailenko, E., "The Influence of the Rotation Frequency of a Planetary Ball Mill on the Limiting Value of the Specific Surface Area of the WC and Co Nanopowders," Adv. Powder Technol., 31(9), 3937-3946 (2020). https://doi.org/10.1016/j.apt.2020.07.033
  29. Guzzo, P. L., Santos, J. B., and David, R. C., "Particle Size Distribution and Structural Changes in Limestone Ground in Planetary Ball Mill," Int. J. Miner. Process., 126, 41-48 (2014). https://doi.org/10.1016/j.minpro.2013.11.005
  30. Zhang, J., Bai, Y., Dong, H., Wu, Q., and Ye, X., "Influence of Ball Size Distribution on Grinding Effect in Horizontal Planetary Ball Mill." Adv. Powder Technol., 25(3), 983-990 (2014). https://doi.org/10.1016/j.apt.2014.01.018
  31. Jeong, S. J., Lee. J. Y., Sohn, J. S., and Hur, T., "Life Cycle Assessments of Long-term and Short-term Environmental Impacts for the Incineration of Spent Li-ion Batteries (LIBs)," J. Korean Ind. Eng. Chem., 17(2), 163-169 (2006).
  32. Rashidi, A. M., Nouralishahi, A., Khodadadi, A. A., Mortazavi, Y., Karimi, A., and Kashefi, K. A., "Modification of Single Wall Carbon Nanotubes (SWNT) for Hydrogen Storage," Int. J. Hydro. Energy, 35(17), 9489-9495 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.038
  33. Lee, N. R., Lee, S. S., Kim, K. I., and Hong, T. W., "Environmental Assessment of Chemically Strengthened Glass for Touch Screen Panel by Material Life Cycle Assessment," Clean Technol., 18(3), 301-306 (2012). https://doi.org/10.7464/ksct.2012.18.3.301