• Title/Summary/Keyword: Supremum function

Search Result 13, Processing Time 0.021 seconds

ULTRASEPARABILITY OF CERTAIN FUNCTION ALGEBRAS

  • Hwang, Sun-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.299-302
    • /
    • 1994
  • Throughout this paper, let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$ /(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued (resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.(omitted)

  • PDF

ON UNIFORMLY ULTRASEPARATING FAMILY OF FUNCTION ALGEBRAS

  • Hwang, Sunwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.125-134
    • /
    • 1993
  • Let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued(resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.s.

  • PDF

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

Genetic association tests when a nuisance parameter is not identifiable under no association

  • Kim, Wonkuk;Kim, Yeong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.663-671
    • /
    • 2017
  • Some genetic association tests include an unidentifiable nuisance parameter under the null hypothesis of no association. When the mode of inheritance (MOI) is not specified in a case-control design, the Cochran-Armitage (CA) trend test contains an unidentifiable nuisance parameter. The transmission disequilibrium test (TDT) in a family-based association study that includes the unaffected also contains an unidentifiable nuisance parameter. The hypothesis tests that include an unidentifiable nuisance parameter are typically performed by taking a supremum of the CA tests or TDT over reasonable values of the parameter. The p-values of the supremum test statistics cannot be obtained by a normal or chi-square distribution. A common method is to use a Davies's upper bound of the p-value instead of an exact asymptotic p-value. In this paper, we provide a unified sine-cosine process expression of the CA trend test that does not specify the MOI and the TDT that includes the unaffected. We also present a closed form expression of the exact asymptotic formulas to calculate the p-values of the supremum tests when the score function can be written as a linear form in an unidentifiable parameter. We illustrate how to use the derived formulas using a pharmacogenetics case-control dataset and an attention deficit hyperactivity disorder family-based example.

A NOTE ON A GENERAL MAXIMAL OPERATOR

  • Kim, Kyung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.155-162
    • /
    • 1995
  • Let $\mu$ be a positive Borel measure on $R^n$ which is positive on cubes. For any cube $Q \subset R^n$, a Borel measurable nonnegative function $\varphi_Q$, supported and positive a.e. with respect to $\mu$ in Q, is given. We consider a maximal function $$ M_{\mu}f(x) = sup \int \varphi Q$\mid$f$\mid$d_{\mu} $$ where the supremum is taken over all $\varphi Q$ such that $x \in Q$.

  • PDF

General Purpose Optical Fuzzy Computing Modules

  • Mamano, Kazuho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.777-780
    • /
    • 1993
  • Three optical fuzzy calculating modules, MAX/MIN, NOT/THROUGH, and SUP/THROUGH operating modules, are proposed. The MAX/MIN operating on inputted 2 membership functions. The NOT/THROUGH operating module calculates the complement of the membership function. The SUP/THROUGH operating module outputs an image representing the supremum (least upper bound) of the membership function. The THROUGH operation passes the image of the inputted membership function from the entrance to the exit. This paper demonstrates that these modules can output the image into which the modules transform inputted images on the basis of operation on fuzzy logic.

  • PDF

UNIQUENESS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM OF CERTAIN NONLINEAR ELLIPTIC OPERATORS VIA p-HARMONIC BOUNDARY

  • Lee, Yong Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1025-1031
    • /
    • 2017
  • We prove the uniqueness of solutions for the boundary value problem of certain nonlinear elliptic operators in the setting: Given any continuous function f on the p-harmonic boundary of a complete Riemannian manifold, there exists a unique solution of certain nonlinear elliptic operators, which is a limit of a sequence of solutions of the operators with finite energy in the sense of supremum norm, on the manifold taking the same boundary value at each p-harmonic boundary as that of f.

REFLECTION PRINCIPLES FOR GENERAL WIENER FUNCTION SPACES

  • Pierce, Ian;Skoug, David
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.607-625
    • /
    • 2013
  • It is well-known that the ordinary single-parameter Wiener space exhibits a reflection principle. In this paper we establish a reflection principle for a generalized one-parameter Wiener space and apply it to the integration of a class of functionals on this space. We also discuss several notions of a reflection principle for the two-parameter Wiener space, and explore whether these actually hold.

A FUNCTION CONTAINING ALL LAGRANGE NUMBERS LESS THAN THREE

  • DoYong Kwon
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.542-554
    • /
    • 2023
  • Given a real number α, the Lagrange number of α is the supremum of all real numbers L > 0 for which the inequality |α - p/q| < (Lq2)-1 holds for infinitely many rational numbers p/q. All Lagrange numbers less than 3 can be arranged as a set {lp/q : p/q ∈ ℚ ∩ [0, 1]} using the Farey index. The present paper considers a function C(α) devised from Sturmian words. We demonstrate that the function C(α) contains all information on Lagrange numbers less than 3. More precisely, we prove that for any real number α ∈ (0, 1], the value C(α) - C(0) is equal to the sum of all numbers 3 - lp/q where the Farey index p/q is less than α.