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Abstract
Some genetic association tests include an unidentifiable nuisance parameter under the null hypothesis of no

association. When the mode of inheritance (MOI) is not specified in a case-control design, the Cochran-Armitage
(CA) trend test contains an unidentifiable nuisance parameter. The transmission disequilibrium test (TDT) in a
family-based association study that includes the unaffected also contains an unidentifiable nuisance parameter.
The hypothesis tests that include an unidentifiable nuisance parameter are typically performed by taking a supre-
mum of the CA tests or TDT over reasonable values of the parameter. The p-values of the supremum test statistics
cannot be obtained by a normal or chi-square distribution. A common method is to use a Davies’s upper bound
of the p-value instead of an exact asymptotic p-value. In this paper, we provide a unified sine-cosine process
expression of the CA trend test that does not specify the MOI and the TDT that includes the unaffected. We also
present a closed form expression of the exact asymptotic formulas to calculate the p-values of the supremum
tests when the score function can be written as a linear form in an unidentifiable parameter. We illustrate how
to use the derived formulas using a pharmacogenetics case-control dataset and an attention deficit hyperactivity
disorder family-based example.

Keywords: Cochran-Armitage trend test, Rice’s formula, sine-cosine process, transmission dise-
quilibrium test, unidentifiable parameter

1. Introduction

A genome-wide association study is a powerful method to screen a high-dimensional genome data
set and select candidate single nucleotide polymorphisms (SNPs) for genetic associations. Genetic
association studies are commonly conducted by a case-control design or family-based design. Table
1 shows a summarization of a case-control data set at a single biallelic SNP. The Cochran-Armitage
(CA) linear trend test (Armitage, 1955; Cochran, 1954) is known to be a powerful test in a genetic
case-control association study, but it requires the specification of a mode of inheritance (MOI). The
MOI can be specified by selecting a weight vector (0, θ, 1) where θ = 0 for recessive model, θ = 1/2
for additive model, and θ = 1 for dominant model. The CA linear trend test can be written as

ZCA(θ) =
√

n[θ(rs1 − sr1) + (rs2 − sr2)]√
rs

[
θ2n1(n − n1) − 2n1n2θ + n2(n − n2)

] . (1.1)

The CA trend test statistic is a Rao’s score test statistic that can be derived from the logit model of

log
(

P(Y = 1|G)
1 − P(Y = 1|G)

)
= α + β {θ · I(G = 1) + I(G = 2)} , (1.2)
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Table 1: Data structure in a case-control association study

AA AB BB Total
Control r0 r1 r2 r

Case s0 s1 s2 s
Total n0 n1 n2 n

Table 2: Data structure in a family-based association study

Transmitted Not transmitted Total
Unaffected bU cU n0
Affected bA cA n1

where I(·) is an indicator function and G is the number of allele B in Table 1, that is, G = 0 for
genotype AA, G = 1 for genotype AB and G = 2 for genotype BB. Under the null hypothesis of
no association, that is, H0 : β = 0, the nuisance parameter θ is not estimable and hence it is not
identifiable under the null hypothesis.

The family-based association study is known to be less powerful than the population-based asso-
ciation study, but the transmission disequilibrium test (TDT) (Spielman et al., 1993) may be a unique
robust test that does not depend on the phenotype distribution, genotype frequencies, or mating dis-
tribution. The power of the TDT may increase by including the unaffected in the statistical analysis
(Lange and Laird, 2002; Lunetta et al., 2000). Table 2 summarizes a single-locus data set in a family-
based association study. The TDT including the unaffected is given by

ZTDT =
(1 − µ)(bA − cA) − µ(bU − cU)√
(1 − µ)2(bA + cA) + µ2(bU + cU)

, (1.3)

where the nuisance parameter µ is not identifiable under the null hypothesis of no association. One of
? common choices of the parameter µ is the prevalence of disease, that is not usually estimable in the
case-control or family-based design.

Davies (1977) proposed the supremum test statistics when a nuisance parameter is present only
under the alternative hypothesis. In addition, he presented a general formula for an upper bound of
the p-value of the supremum test. This upper bound in an integral form is generally called the Davies’
upper bound.

Gaussian processes are widely used in many scientific fields (Choi and Lee, 2014; Lee and Park,
2017). A sine-cosine process is the simplest Gaussian wave process written as

U(t) = U1 cos t + U2 sin t (1.4)

where U1 and U2 are independent standard normal random variables. Delmas (2003) derived the exact
formula to calculate the upper tail probability of M(t) = sup0≤s≤t U(s) by applying Rice’s formula
(Rice, 1944, 1945).

In this work, we show that the supremum test of the CA linear trend test and the supremum test
of the TDT can be written in terms of the supremum of a sine-cosine process, and we provide the
exact asymptotic p-value calculation formulas for unified test statistics based on the supremum of the
sine-cosine process.

2. Methods

Suppose that the probability function p(y, β, α, ϕ) does not depend on θ when the null hypothesis is
true, that is, H0 : β = β0. In this work, we assume β and θ are scalars and α can be a parameter vector.
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The score function is written as

Uβ,N(β0, α, ϕ) =
1
√

N

N∑
i=1

∂

∂β

∣∣∣∣∣
β=β0

log p(yi, β, α, ϕ). (2.1)

Let α̂0 be the maximum likelihood estimate of α under H0 : β = β0. Now suppose this score function
can be written in form of

Uβ,N(β0, α̂0, ϕ) = X1,N + w(ϕ)X2,N (2.2)

where w is a continuous function in R and let θ = w(ϕ). Suppose that the bivariate random vector
XN = (X1,N , X2,N)′ converges in distribution to a mean zero bivariate normal random vector, that is,

XN = (X1,N , X2,N)′
d→ X = (X1, X2)′ ∼ N ((0, 0)′,Σ) where Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
as N → ∞ under the

null hypothesis. For simplicity, we use notation

Uβ,N(β0, α̂0, θ) = X1,N + θX2,N (2.3)

and we define the locally most powerful test given θ as

ZN(θ) =
Uβ,N(β0, α̂0, θ)√

σ2
1 + 2θρσ1σ2 + θ2σ2

2

=
X1,N + θX2,N√

σ2
1 + 2θρσ1σ2 + θ2σ2

2

. (2.4)

Since ZN(θ)
d→ Z(θ), the p-value of the test statistic can be obtained from the Gaussian process of

Z(θ) =

[
X1 − σ1

σ2
ρX2

]
+

(
θ + σ1

σ2
ρ
)

X2√
σ2

1 + 2θρσ1σ2 + θ2σ2
2

. (2.5)

We define two independent standard normal random variable U1 and U2 as

U1 =
X1 − σ1

σ2
ρX2

σ1
√

1 − ρ2
, U2 =

X2

σ2
. (2.6)

Using these standard random variables, we can write

Z(θ) =
σ1

√
1 − ρ2U1 + (ρσ1 + θσ2)U2√(

σ1
√

1 − ρ2
)2
+ (ρσ1 + θσ2)2

. (2.7)

We define an angle t = t(θ) by

cos t =
σ1

√
1 − ρ2√(

σ1
√

1 − ρ2
)2
+ (ρσ1 + θσ2)2

, sin t =
ρσ1 + θσ2√(

σ1
√

1 − ρ2
)2
+ (ρσ1 + θσ2)2

. (2.8)

Here cos t is always nonnegative for all θ but sin t can be positive or negative depending upon θ. Hence
we may assume that −π/2 ≤ t ≤ π/2. In terms of the parameter t = t(θ),

Z(θ) = U1 cos t(θ) + U2 sin t(θ). (2.9)
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Let U(t) = U1 cos t+U2 sin t where t(θ) = arctan((ρσ1 + θσ2)/(σ1
√

1 − ρ2)). Let tL = minθL≤θ≤θU t(θ)
and tU = maxθL≤θ≤θU t(θ). Here U(t) is the orthogonal projection of (U1,U2) onto the straight line
joining the origin (0, 0) and (cos t, sin t). Without loss of generality, suppose tU − tL ≤ π since −π/2 ≤
t ≤ π/2. First we can simply obtain the supremum of U(t) or |U(t)| by the following equations:

sup
tL≤t≤tU

U(t) =


√

U2
1 + U2

2 , for tL ≤ arctan
(

U2
U1

)
≤ tU , U1 ≥ 0,

max
t∈{tL,tU }

(U1 cos t + U2 sin t) , otherwise,
(2.10)

sup
tL≤t≤tU

|U(t)| =


√

U2
1 + U2

2 , for tL ≤ arctan
(

U2
U1

)
≤ tU ,

max
t∈{tL,tU }

|U1 cos t + U2 sin t| , otherwise.
(2.11)

For a given u > 0, we can calculate the right-tail probabilities of sup U(t) and sup |U(t)| by the
following Theorem.

Theorem 1. Suppose −π/2 ≤ tL ≤ tU ≤ π/2 and u > 0. Let U(t) be a sine-cosine process defined on
[tL, tU]. Let Φ(u) be the distribution function of a standard normal random variate.

1. The one-sided p-value is the same as the Davies’ upper bound that is given by

P
(

sup
tL≤t≤tU

U(t) ≥ u
)
= 1 − Φ(u) +

tU − tL

2π
e−

u2
2 . (2.12)

2. The two-sided p-value is smaller than the Davies’ upper bound and it can be calculated by

P
(

sup
tL≤t≤tU

|U(t)| ≥ u
)
= 2 [1 − Φ(u)] +

tU − tL

π
e−

u2
2 − 1

π

∫ tU−tL

0
exp

[
− u2

1 − cos s

]
ds (2.13)

= 2P
(

sup
tL≤t≤tU

U(t) ≥ u
)
− 1
π

∫ tU−tL

0
exp

[
− u2

1 − cos s

]
ds. (2.14)

If tU − tL = π/2, then

P
(

sup
tL≤t≤tU

|U(t)| ≥ u
)
= 2 [1 − Φ(u)] +

1
2

e−
u2
2 − 2 [1 − Φ(u)]2 . (2.15)

The proof of Theorem 1 is given in Appendix. The following corollary is immediate from the contents
in this section and Theorem 1.

Corollary 1. (Unified representation of ZZZTDT(µ)(µ)(µ) and ZZZCA(θ)(θ)(θ)) ZTDT(µ) and ZCA(θ) can be writ-
ten as a sine-cosine process so that the supremum tests are

sup
tl≤t≤tu

U(t) or sup
tl≤t≤tu

|U(t)|, (2.16)

where U(t) = U1 cos t + U2 sin t is a sine-cosine process with independent standard normal random
variates U1 and U2. For the family-based association test,

cos t =
(1 − µ)

√
bA + cA√

(1 − µ)2(bA + cA) + µ2(bU + cU)
, sin t =

µ
√

bU + cU√
(1 − µ)2(bA + cA) + µ2(bU + cU)

. (2.17)
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If 0 ≤ µL ≤ µ ≤ µU ≤ 1, then

tL = arctan
 µL

1 − µL

√
bU + cU

bA + cA

 and tU = arctan
 µU

1 − µU

√
bU + cU

bA + cA

 . (2.18)

For the CA linear trend test,

cos t =

√
1 − ρ2σ1√(

1 − ρ2)σ2
1 + (σ1ρ + θσ2)2

, sin t =
σ1ρ + θσ2√(

1 − ρ2)σ2
1 + (σ1ρ + θσ2)2

, (2.19)

where σ1 =
√

p2(1 − p2), σ2 =
√

p0(1 − p0), and ρ = −
√

p1 p2
(1−p1)(1−p2) ,

tL = − arctan
(√

p1 p2

p0

)
, tU = arctan

(√
p0 p1

p2

)
. (2.20)

Here, p0 = P(AA), p1 = P(AB), and p2 = P(BB). The p-values of the supremum tests of the TDT
including the unaffected and the CA trend test with unspecified MOI can be obtained from Theorem 1.

3. Examples

In this section, we illustrate two examples. One is a case-control type pharmacogenetics data set of
anti-epileptic drug responses. The other example is the case-parent trio dataset of attention deficit
hyperactivity disorder (ADHD) illustrated in Lunetta et al. (2000).

3.1. Case-control association study

Two hundred and eighty-eight patients of epilepsy were recruited from multiple epilepsy clinics in
Korea and they were genotyped for whole-exomes by the next-generation sequencing experiments.
All study participants were eligible if they had drug-resistant (case group) or drug-responsive (control
group) epilepsy according to the following definitions and criteria explained in Kim et al. (2011).
Drug resistance was defined as the occurrence of at least four unprovoked seizures in the course
of the year before recruitment, with trials of two or more appropriate antiepileptic drugs (AEDs)
at maximal tolerated doses. Patients who underwent surgical treatment for drug-resistant epilepsy
were classified as having drug-resistant epilepsy, regardless of the surgical outcome. Patients who
were frequently in poor compliance with AED therapy and those who had reported seizures with a
questionable semiology were excluded from this study. We define drug responsiveness as complete
freedom from seizures for at least one year up to the date of the last follow-up visit.

We performed the CA trend tests for recessive, additive, and dominant genetic models and the
supremum test of the CA test for undetermined MOI but 0 ≤ θ ≤ 1. The p-values of the CA trend tests
for the three specific genetic models are calculated by the upper tails of a chi-squared distribution with
one degree of freedom while the p-values of the supremum tests are calculated by two ways. Table
3 shows the five smallest p-values of the supremum of CA trend tests for 0 ≤ θ ≤ 1 calculated by
Equation (2.14) in Theorem 1 and the permutation p-values from 1 million and 10 millions permuted
data. The p-values of the CA trend tests under recessive (θ = 0), additive (θ = 0.5), and dominant
(θ = 1) MOI are included in the table. For 0 ≤ θ ≤ 1, the permutation p-value tends to be smaller
than the exact asymptotic p-value from Equation (2.14). It appears that the permuted p-values based
on 10 millions permuted data are closer to the exact asymptotic p-values derived in this paper than the
permuted p-values obtained from one million permuted data.
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Table 3: The p-values of the top five SNPs selected by the CA trend tests for 0 ≤ θ ≤ 1 of the anti-epileptic drug
data

SNP 0 ≤ θ ≤ 1
θ = 0 θ = 0.5 θ = 1Exact 1,000,000 10,000,000

rs16964316 5.42 × 10−6 1.00 × 10−6 2.60 × 10−6 4.68 × 10−6 2.17 × 10−6 9.55 × 10−5

rs17671352 1.34 × 10−5 7.00 × 10−6 8.70 × 10−6 1.42 × 10−1 1.66 × 10−4 2.02 × 10−6

rs16909651 6.09 × 10−5 5.60 × 10−5 5.92 × 10−5 3.14 × 10−5 2.14 × 10−5 1.61 × 10−3

rs12417255 6.33 × 10−5 5.50 × 10−5 6.24 × 10−5 2.75 × 10−3 1.96 × 10−5 2.22 × 10−5

rs12041477 8.84 × 10−5 7.41 × 10−5 7.57 × 10−5 3.25 × 10−2 7.54 × 10−5 1.61 × 10−5

The numbers in the second column are obtained from Equation (2.14). The numbers in the third and fourth columns of
0 ≤ θ ≤ 1 are the p-values based on the Monte-Carlo permutation method from 1 million and 10 millions permuted data,
respectively. SNP = single nucleotide polymorphism.

Table 4: Two-tailed p-values when the nuisance parameter µ is known to be in an interval, (0, 1), (0.05, 0.1), or
(0.114, 0.161) for the attention deficit hyperactivity disorder data

Allele N
µ

Asymptotic Permutation
bA cA bU cU p-value p-value

DAT-480 17 10 6 13 (0.000, 1.000) 0.09099 0.083
(0.050, 0.100) 0.14124 0.146
(0.114, 0.161) 0.11762 0.146

DRD4-7 15 6 5 10 (0.000, 1.000) 0.05017 0.058
(0.050, 0.100) 0.03970 0.040
(0.114, 0.161) 0.03360 0.034

The Monte Carlo permutation p-values are obtained based on 1,000 permuted data.

3.2. Family-based association study

Lunetta et al. (2000) recruited 39 nuclear families in which at least one family member was believed
to have ADHD and all individuals were assessed for the Diagnostic and Statistical Manual of Mental
Disorders IV ADHD to determine their phenotypes. For DAT gene, 60 parent-child trios in 35 nu-
clear families, consisting of 33 affected and 27 unaffected children, were genotyped. A total of 15
unaffected children had exactly one heterozygous parent; 2 unaffected children had two heterozygous
parents. A total of 15 affected children had one heterozygous parent; 6 affected children had two het-
erozygous parents. Twelve additional trios were genotyped for DRD4 gene, resulting in a total of 72
trios, with 42 affected and 30 unaffected children, in 39 nuclear families. For DRD4-7, 11 unaffected
children had exactly one heterozygous parent; and 2 unaffected children had two heterozygous par-
ents. A total of 13 affected children had exactly one heterozygous parent; 4 affected children had two
heterozygous parents. The two genes were treated as biallelic; DRD4-7 against all other DRD4 alleles
and DAT-480 against all other DAT alleles. For an illustration of the TDT example, we performed the
TDT under no information of the prevalence of ADHD, that is, 0 ≤ µ ≤ 1. We also conducted the
TDT under 0.05 ≤ µ ≤ 0.1 (Lunetta et al., 2000) and under 0.114 ≤ µ ≤ 0.161 (Faraone et al., 2003).
Table 4 shows the p-values of the TDTs under two cases. The p-value under 0.05 ≤ µ ≤ 0.1 is greater
than the p-value under 0 ≤ µ ≤ 1 for DAT-480 whereas the opposite holds for DRD4-7.

4. Discussion and conclusions

In this paper, we derived simple formulas to calculate the p-values of the supremum tests when a
score function is linear in an unidentifiable nuisance parameter as in Equation (2.2). The derived
formulas can be used to calculate the p-values of the CA trend test when the MOI is not specified as
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Table 5: The results of the simulation study

SNP used for 0 ≤ θ ≤ 1
simulated data Exact asymptotic 1,000,000 10,000,000

rs16964316 4.39 × 10−8 0.00 1.00 × 10−7

rs17671352 3.12 × 10−6 2.00 × 10−6 2.50 × 10−6

rs16909651 5.05 × 10−7 0.00 4.00 × 10−7

rs12417255 9.66 × 10−7 1.00 × 10−6 9.00 × 10−7

rs12041477 2.23 × 10−6 2.00 × 10−6 2.70 × 10−6

Each dataset was generated by three copies of the genotypes of one of SNPs in Table 3. The phenotypes were generated by
combining two copies of the phenotypes of the real data and a randomized copy of the phenotypes.
SNP = single nucleotide polymorphism.

well as the TDT including the unaffected. In particular, the Davies’s upper bound is the same as the
exact asymptotic p-value of the supremum test for a one-sided alternative hypothesis while the exact
asymptotic two-tailed p-value is smaller than the corresponding Davies’s upper bound. As shown in
Examples section, the approximate p-values of the supremum tests can be obtained by the Monte-
Carlo permutation method. The exact asymptotic p-value tends to be greater than the permutation
p-value in the case-control example, when the sample size is 288. To investigate the convergence of
the exact asymptotic p-values, we conducted a small simulation study, in which we generated five
fictitious SNPs data. For each SNP in Table 3, we used a dataset having three copies of genotypes
while two copies of the phenotypes are used and a copy of phenotypes is randomized. Hence, the
sample size of the simulation study is set as 864. By doing this, we could simulate the p-values
around 10−6–10−8.

Table 5 shows the simulation results. We could not see any pattern that one method provides
smaller p-values compared to the other method. It appears that the permutation p-value may be pre-
ferred when the sample size is not sufficiently large, whereas the exact asymptotic p-value may be
preferred when the sample size is large enough. However, this permutation approach is computation-
ally intensive and the Monte-Carlo permutation p-values depend on specified seeds and the number
of resamples; 175 minutes on average were required to complete an empirical p-value calculation
based on 10 million permuted data using a 3.5 GHz intel Xeon processor. Therefore, the permuta-
tion method for whole-exome or whole-genome data may not be feasible. Kim et al. (2012) and
Kim (2015) proposed the linear trend tests and the TDT based on read counts for low-coverage next-
generation sequences experiments in which genotypes are uncertain. Their extended tests require
much computational resources due to estimating the parameters of mixture models. Our work in this
paper can be applied to the extended linear trend tests and the TDT based on read counts while saving
computational resources.

We also provided the unified sine-cosine process expression of the supremum tests for the CA
linear trend without specifying the MOI and the TDT including the unaffected. This work focused
on the case in which there is a one-dimensional unidentifiable nuisance parameter in a linear form.
Davies (1987, 2002) considered a chi-square process and an F-process for more complex models and
our work may be extended to cases in which two or more unidentifiable nuisance parameters exist.

Appendix:

Proof of Theorem 1: Since the distribution of (U1,U2) is invariant under rotations, we may assume
tL = 0 and tU = s.
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1. For a given u > 0,

P
(

sup
0≤t≤s

U(t) ≥ u
)

=

∫ 0

− π
2

[∫ ∞

u/ cos θ

1
2π

e−
r2
2 rdr

]
dθ +

∫ s+ π
2

s

[∫ ∞

u/ cos θ

1
2π

e−
r2
2 rdr

]
dθ +

∫ s

0

[∫ ∞

u

1
2π

e−
r2
2 rdr

]
dθ

=

∫ π
2

− π
2

[∫ ∞

u/ cos θ

1
2π

e−
r2
2 rdr

]
dθ +

∫ s

0

[∫ ∞

u

1
2π

e−
r2
2 rdr

]
dθ

=

∫ ∞

u

[∫ ∞

−∞

1
2π

e−
x2+y2

2 dy
]

dx +
∫ s

0

[∫ ∞

u

1
2π

e−
r2
2 rdr

]
dθ

= 1 − Φ(u) +
s

2π
e−

u2
2 .

2. For a fixed u > 0,

P
(

sup
0≤t≤s
|U(t)| ≥ u

)
= 2P

(
sup

0≤t≤s
U(t) ≥ u

)
− 2

∫ s
2

0

∫ ∞

u
sin θ

1
2π

e−
r2
2 rdr

 dθ

= 2 [1 − Φ(u)] +
s
π

e−
u2
2 − 1

π

∫ s

0
exp

[
− u2

1 − cos θ

]
dθ.

If s = π/2, then

P

 sup
0≤t≤ π

2

|U(t)| ≥ u

 = 2 [1 − Φ(u)] +
1
2

e−
u2
2 − 2

∫ ∞

u

[∫ ∞

u

1
2π

e−
x2+y2

2 dx
]

dy

= 2 [1 − Φ(u)] +
1
2

e−
u2
2 − 2 [1 − Φ(u)]2 .
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