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REFLECTION PRINCIPLES FOR GENERAL WIENER

FUNCTION SPACES

Ian Pierce and David Skoug

Abstract. It is well-known that the ordinary single-parameter Wiener
space exhibits a reflection principle. In this paper we establish a reflection
principle for a generalized one-parameter Wiener space and apply it to the
integration of a class of functionals on this space. We also discuss several
notions of a reflection principle for the two-parameter Wiener space, and
explore whether these actually hold.

1. Introduction

Let C0[0, T ] denote single-parameter Wiener space; this is the space of R-
valued continuous functions on [0, T ] with x(0) = 0. Let M denote the class of
Wiener measurable subsets of C0[0, T ] and let m denote Wiener measure. Then
(C0[0, T ],M,m) is a complete measure space and we denote the integral of a
Wiener-measurable functional F by

∫

C0[0,T ] F (x)m(dx) whenever this integral

exists. Note that the point evaluation functional 〈δt, x〉 = x(t) is an R-valued
random variable with mean

E[x(t)] =

∫

C0[0,T ]

x(t)m(dx) = 0

and covariance

E[x(s)x(t)] =

∫

C0[0,T ]

x(s)x(t)m(dx) = min(s, t);

observe also that t 7→ x(t) is a realization of the standard Brownian motion
process.

It is well-known that the Wiener space C0[0, T ] exhibits a reflection principle;
that is for all c ≥ 0,

(1) m

{

x : sup
[0,T ]

x(t) ≥ c

}

= 2m {x : x(T ) ≥ c} .
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Proofs and discussions of this result can be found in [12, 14, 23] and elsewhere;
a particularly good explanation is given in [2].

In Section 2, we show that the generalized function space Ca,b[0, T ] exhibits
a very similar behavior about its mean function a(t); that is, for c ≥ 0,

(2) µ

{

x : sup
[0,T ]

[x(t)− a(t)] ≥ c

}

= 2µ {x : [x(T )− a(T )] ≥ c} .

This fact in turn leads to formulas aiding in the integration of a class of func-
tionals on Ca,b[0, T ].

For Q = [0, S] × [0, T ], let C2(Q) denote the two parameter Wiener space
(see [21]); this is the space of all R-valued continuous functions on Q satisfying
x(s, 0) = x(0, t) = 0 for all (s, t) ∈ Q. In Sections 3 and 4, we consider the
difficulties in formulating a notion similar to that expressed in equations (1)
and (2).

2. Greatest deviations on the function space Ca,b[0, T ]

We first introduce the generalizedWiener space (Ca,b[0, T ],M(Ca,b[0, T ]), µ).
We follow the same formulation as [5, 6, 8]. Let a and b be functions defined on
[0, T ] with a′ ∈ L2[0, T ], and b′ continuous, positive, and bounded away from
0 on [0, T ]. Observe that a and b are absolutely continuous and b is strictly
increasing on [0, T ], and so one can define a generalized Brownian motion as
in Chapter 3 of [23]. We take µ to be the Gaussian measure on C[0, T ] with
finite-dimensional distributions having density





n
∏

j=1

2π[b(tj)− b(tj−1)]





−1
2

exp



−1

2

n
∑

j=1

([uj − a(tj)]− [uj−1 − a(tj−1)])
2

b(tj)− b(tj−1)



 ,

with t0 = 0, u0 = 0, and 0 = a(0) = b(0).
Let ||·|| denote the usual supremum norm and let Ca,b[0, T ] denote the Ba-

nach space {x ∈ C[0, T ] : x(0) = 0} on which this measure µ is supported
(as shown in [23]). Then (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is a measure space, where
B(Ca,b[0, T ]) is the Borel sigma algebra of Ca,b[0, T ]. One can then complete
this measure space to (Ca,b[0, T ],M(Ca,b[0, T ]), µ), with M(Ca,b[0, T ]) denot-
ing the complete sigma algebra of Wiener measurable subsets.

We note that with respect to µ the coordinate evaluation map 〈δt, x〉 = x(t)
is the generalized Brownian motion process determined by a and b, having
mean

E[x(t)] =

∫

Ca,b[0,T ]

x(t)µ(dx) = a(t),

and covariance function

r(s, t) =

∫

Ca,b[0,T ]

[x(s) − a(s)][x(t) − a(t)]µ(dx) = min{b(s), b(t)}.
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For more information about these function spaces, consult [5, 6, 7, 8, 9, 10].
We will refer to the map x 7→ sup[0,T ][x(t) − a(t)] as the greatest (positive)

deviation function on the space Ca,b[0, T ]. In the same way one may take the
greatest (negative) deviation function as x 7→ sup[0,T ][a(t)− x(t)]. As its name
suggests, this function measures the largest amount of deviation of an element
x ∈ Ca,b[0, T ] from the center of the support of µ (i.e. the function a). Note
also that

||x− a|| = max

{

sup
[0,T ]

[x(t) − a(t)], sup
[0,T ]

[a(t)− x(t)]

}

.

We will make use of the following lemma from Chapter 3 of [23].

Lemma 1. Let {Xj : j = 1, . . . , n} be an independent set of symmetrically

distributed random variables on a probability space (Ω,B,P), let S0 = 0, and
let Sj = X1 + · · ·+Xj for j = 1, . . . , n. Then for every ε > 0,

(3) 2P[Sn ≥ c] ≥ P

[

max
1≤j≤n

Sj ≥ c

]

≥ 2P [Sn ≥ c+ 2ε]− 2

n
∑

j=1

P[Xj ≥ ε].

We are now ready to establish equation (2) above, which will yield valuable
information about the behavior of the greatest deviation function. Our proof
uses ideas from Chapter 3 of [23] as well as from unpublished lecture notes of
R. H. Cameron.

Theorem 1. For all c ≥ 0,

(4) µ

{

x : sup
[0,T ]

[x(t)− a(t)] ≥ c

}

= 2µ {x : [x(T )− a(T )] ≥ c} .

Proof. Let D ⊆ [0, T ] be countable and dense, containing 0 and T , and let
Pn = {0 = t0 < t1 < · · · < tn = T } denote a nested sequence of partitions of
[0, T ] with each tj ∈ D and mesh(Pn) → 0 as n → ∞. Note that the process
Xt = x(t) is continuous and separable, and thus for all c > 0 and ε > 0,

µ

{

x : sup
[0,T ]

[x(t)− a(t)] ≥ c

}

= µ

{

x : sup
D

[x(t)− a(t)] ≥ c

}

≤ µ

( ∞
⋃

n=1

{

x : max
1≤k≤n+1

[x(tk)− a(tk)] ≥ c− ε

}

)

= lim
n→∞

µ

{

x : max
1≤k≤n+1

[x(tk)− a(tk)] ≥ c− ε

}

≤ 2µ {x : x(T )− a(T ) ≥ c− ε} ,
where the last inequality is due to Lemma 1. Taking the limit as ε → 0 yields

µ

{

x : sup
[0,T ]

[x(t)− a(t)] ≥ c

}

≤ 2µ {x : [x(T )− a(T )] ≥ c} .
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For the other inequality, we specify partitions Pn = {0 = t0 < t1 < · · · <
tn = T } with tk = kT

n
. Then for any c > 0 and ε > 0 we again use Lemma 1

to obtain

µ

{

x : sup
[0,T ]

[x(t) − a(t)] ≥ c

}

(5)

≥ µ

{

x : max
1≤k≤n

[x(tk)− a(tk)] ≥ c

}

≥ 2µ {x : [x(T )− a(T )] ≥ c+ 2ε}

− 2

n
∑

k=1

µ {x : [x(tk)− a(tk)− x(tk−1) + a(tk−1)] ≥ ε} .

We estimate

1√
2πs

∫ ∞

ε

exp

(

−u2

2s

)

du ≤ 1√
2πs

∫ ∞

ε

exp
(

−εu

2s

)

du(6)

=

√
2s

ε
√
π
exp

(

− ε2

2s

)

,

and (noting that b′ is positive and bounded) that

max
1≤k≤n

[b(tk)− b(tk−1)] = max
1≤k≤n

∫ tk

tk−1

b′(s)ds

≤ max
1≤k≤n

(

[tk − tk−1]

∫ tk

tk−1

(b′(s))
2
ds

)

1
2

(7)

≤ ||b′||2
√
T√

n
.

Recall that x(tk) − a(tk) − x(tk−1) + a(tk−1) is distributed normally with
mean 0 and variance b(tk) − b(tk−1), and then using our estimates in (6) and
(7), we find that

lim
n→∞

n
∑

k=1

µ {x : [x(tk)− a(tk)− x(tk−1) + a(tk−1)] ≥ ε}

= lim
n→∞

n
∑

k=1

1
√

2π[b(tk)− b(tk−1)]

∫ ∞

ε

exp

(

− u2

b(tk)− b(tk−1)

)

du

≤ lim
n→∞

n
∑

k=1

√

2[b(tk)− b(tk−1)]

ε
√
π

exp

(

− ε2

2[b(tk)− b(tk−1)]

)

≤ lim
n→∞

n





√

2 ||b′||2
√
T

ε
√
πn

exp

(

− ε2

2 ||b′||2
√
T

)
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≤ lim
n→∞

n
∑

k=1

√

2n ||b′||2
√
T

ε
√
π

exp

(

−
√
nε2

2 ||b′||2
√
T

)

.

Now use this estimate and let n → ∞ and then ε → 0 in (5). �

The theorem above has several useful corollaries.

Corollary 1. Let E be a Lebesgue measurable subset of R. Then

(8) µ

{

x : sup
[0,T ]

[x(t)− a(t)] ∈ E

}

= 2µ {x : [x(T )− a(T )] ∈ E ∩ [0,∞)}

and

(9)

∫

Ca,b[0,T ]

χE

(

sup
[0,T ]

[x(t) − a(t)]

)

µ(dx)

=
2

√

2πb(T )

∫ ∞

0

χE(u) exp

(

− u2

2b(T )

)

du.

Proof. The proof is a standard exercise in measure theory. Begin with E an
open interval and the result follows easily. The case for an open set E follows
by decomposing E into a countable union of disjoint intervals. From this,
demonstrate that (8) holds for Gδ and then null sets. Finally use this to
demonstrate the conclusion for Lebesgue measurable sets. Then (9) follows
immediately from (8). �

In the next corollary we note that by choosing the mean function a to be
identically zero, we immediately recover a direct extension of the reflection
principle for ordinary Wiener space, as expected.

Corollary 2. Let µ be a generalized Wiener measure on Ca,b[0, T ] with a(t) = 0
on [0, T ]. Then for all c ≥ 0 and t0 ∈ (0, T ],

(10) µ

{

x : sup
[0,t0]

x(t) ≥ c

}

= 2µ {x : x(t0) ≥ c} .

Corollary 3. Let f : R → C be Lebesgue measurable with f = 0 on (−∞, 0)

and put F (x) = f
(

sup[0,T ][x(t)− a(t)]
)

. Then F is µ-measurable and

∫

Ca,b[0,T ]

F (x)µ(dx) =

∫

Ca,b[0,T ]

f

(

sup
[0,T ]

[x(t)− a(t)]

)

µ(dx)

= 2

∫

Ca,b[0,T ]

f (x(T )− a(T ))µ(dx)(11)

=
2

√

2πb(T )

∫ ∞

0

f(u) exp

(

− u2

2b(T )

)

du.
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Let p be a positive real number; for c ≥ 0 we let

erfc(c; p) =
1√
2πp

∫ ∞

c

exp

(

−u2

2p

)

du

denote the complimentary error function with variance parameter p. Also let
X(x) = sup[0,T ][x(t) − a(t)] be the greatest deviation as a random variable on

the probability space (Ca,b[0, T ],M, µ). As an application of Corollaries 1 and
3 we obtain the following information about this random variable.

Corollary 4. Let X(x) = sup[0,T ][x(t)− a(t)]. Then

(1) the cumulative distribution function for X is

F (c) =

{

0 if c < 0

1− 2 erfc(c; b(T )) if c ≥ 0,

(2) the probability density function for X is

f(c) =







0 if c < 0
2√

2πb(T )
exp

(

− c2

2b(T )

)

if c ≥ 0,

(3) the first moment (expectation) of X is E[X ] =
√

2b(T )
π

,

(4) the variance of X is Var[X ] = b(T )− 2b(T )
π

,

(5) the characteristic function for X is analytic, with series representation

ϕ(ξ) =

∞
∑

k=0

ak(iξ)
k,

where the coefficients ak are of the form

ak =
(2b(T ))

k
2

k!
√
π

Γ

(

k + 1

2

)

.

Proof. It is an immediate consequence of Corollary 1 that

µ

{

x : sup
[0,T ]

[x(t) − a(t)] ≥ c

}

= 2erfc(c, b(T )).

Observe that the cdf for X is

F (c) = P[X ≤ c] = 1− µ

{

x : sup
[0,T ]

[x(t) − a(t)] ≥ c

}

,

and then note that the right hand side of this equation is 0 if c < 0 and is equal
to 1− 2erfc(c, b(T )) otherwise. Differentiating F yields f .

Using Corollary 3, straightforward computations show that

E[X ] =
2

√

2πb(T )

∫ ∞

0

u exp

(

− u2

2b(T )

)

du =

√

2b(T )

π
,
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and also that

E[X2] =
2

√

2πb(T )

∫ ∞

0

u2 exp

(

− u2

2b(T )

)

du

=
2

√

2πb(T )

(√
2(b(T ))

3
2

∫ ∞

0

v
1
2 exp(−v) dv

)

=
2b(T )√

π
Γ

(

3

2

)

= b(T ).

Then the variance of X is easily determined.
We obtain the characteristic function for X by calculating

ϕ(ξ) =

∫

Ca,b[0,T ]

exp

(

iξ sup
[0,T ]

[x(t) − a(t)]

)

µ(dx)

=
2

√

2πb(T )

∫ ∞

0

exp (iuξ) exp

(

− u2

2b(T )

)

du.

For z ∈ C we consider the function

F (z) =

∫ ∞

0

2
√

2πb(T )
exp (iuz) exp

(

− u2

2b(T )

)

du.

Note that the integrand

f(z, u) =
2

√

2πb(T )
exp (iuz) exp

(

− u2

2b(T )

)

is measurable on [0,∞) for each z ∈ C and is entire for each u ∈ [0,∞). In
addition, for any z0 ∈ C and δ > 0 the function

sup
|z−z0|<δ

|f(z, ·)|

is integrable on [0,∞) because

|f(z, u)− f(z0, u)| =
2

√

2πb(T )
exp

(

− u2

2b(T )

)

∣

∣eiuz − eiuz0
∣

∣

≤ 2
√

2πb(T )
exp

(

− u2

2b(T )

)

(2 exp (uImz0 + δ))

whenever |z − z0| < δ. Then by [15] the function F is entire, with

d

dz
F (z) =

∫ ∞

0

∂

∂z
f(z, u) du.

From this we see that

dk

dzk
F (z) =

2
√

2πb(T )

∫ ∞

0

(iu)k exp (iuz) exp

(

− u2

2b(T )

)

du,
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and then expanding F as a power series centered at z = 0 we obtain the desired
coefficients by computing

F (k)(0) =
2ik

√

2πb(T )

∫ ∞

0

uk exp

(

− u2

2b(T )

)

du

=
ik

√

2πb(T )
(2b(T ))

k+1
2

∫ ∞

0

v
k−1
2 e−v dv

=
ik(2b(T ))

k
2

√
π

Γ

(

k + 1

2

)

.

Restricting F to R, we see that ϕ(ξ) has the desired properties. �

We have some additional corollaries, which can be used to yield error esti-
mates when approximating function space integrals using interpolation by tame
functionals. For examples of the use of these types of results, see [3, 20].

Corollary 5. If f is Lebesgue measurable and nonnegative on [0,∞), then

f (||x− a||) is µ-measurable and

(12)

∫

Ca,b[0,T ]

f (||x− a||)µ(dx) ≤ 4
√

2πb(T )

∫ ∞

0

f(u) exp

(

− u2

2b(T )

)

du.

Proof. Partition Ca,b[0, T ] into

A =

{

x : sup
[0,T ]

[x(t)− a(t)] ≥ sup
[0,T ]

[a(t)− x(t)]

}

,

and

B =

{

x : sup
[0,T ]

[a(t)− x(t)] > sup
[0,T ]

[x(t)− a(t)]

}

.

Then we find that
∫

Ca,b[0,T ]

f (||x− a||)µ(dx) =
∫

A

f (||x− a||)µ(dx) +
∫

B

f (||x− a||)µ(dx)

=

∫

A

f

(

sup
[0,T ]

[x(t)− a(t)]

)

µ(dx)

+

∫

B

f

(

sup
[0,T ]

[a(t)− x(t)]

)

µ(dx)

≤
∫

Ca,b[0,T ]

f

(

sup
[0,T ]

[x(t)− a(t)]

)

µ(dx)

+

∫

Ca,b[0,T ]

f

(

sup
[0,T ]

[a(t)− x(t)]

)

µ(dx)
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=
4

√

2πb(T )

∫ ∞

0

f(u) exp

(

− u2

2b(T )

)

du,

where the last equality follows from Corollary 3, the positivity of f , and the
symmetry of the centered normal distribution. �

Corollary 6. Let f be Lebesgue measurable and monotonically increasing on

[0,∞). Then

(13)
2

√

2πb(T )

∫ ∞

0

f(u) exp

(

− u2

2b(T )

)

du ≤
∫

Ca,b[0,T ]

f(||x− a||)µ(dx)

whenever both sides are defined. Moreover, if f is Lebesgue measurable and

monotonically decreasing the reverse inequality holds whenever both sides are

defined.

Proof. Recall that

||x− a|| = max

{

sup
[0,T ]

[x(t) − a(t)], sup
[0,T ]

[a(t)− x(t)]

}

,

Using this fact, the monotonicity of f , and Corollary 3, we have

2
√

2πb(T )

∫ ∞

0

f(u) exp

(

− u2

2b(T )

)

du =

∫

Ca,b[0,T ]

f

(

sup
[0,T ]

[x(t) − a(t)]

)

µ(dx)

≤
∫

Ca,b[0,T ]

f (||x− a||)µ(dx),

as desired. For decreasing f the inequality clearly reverses. �

A final corollary follows immediately from the previous two.

Corollary 7. If f is Lebesgue measurable, nonnegative, and monotonically

increasing on [0,∞), then there exists some M satisfying 2 ≤ M ≤ 4 such that

(14)

∫

Ca,b[0,T ]

f(||x− a||)µ(dx) = M
√

2πb(T )

∫ ∞

0

f(u) exp

(

− u2

2b(T )

)

du.

3. No reflection principle for two-parameter Wiener space

Let Q = [0, S] × [0, T ] and ∂Q = {(s, t) ∈ Q : s = 0, S or t = 0, T } be the
boundary ofQ, and let C2(Q) denote the space of continuousR-valued functions
defined on Q for which x(0, t) = x(s, 0) = 0. In [21, 22], Yeh constructed a
Gaussian measure my on C2(Q) with respect to which the point evaluation
functional δ(s,t) is an R-valued random variable having mean

E[x(s, t)] =

∫

C2(Q)

x(s, t)my(dx) = 0
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and covariance

E[x(s, t)x(u, v)] =

∫

C2(Q)

x(s, t)x(u, v)my(dx) = min(s, u)min(t, v).

Recall that for functions of one variable, the classical notion of a function of
bounded variation is unambiguously defined and very well understood. How-
ever, when considering functions of two (or more) variables, there are many
possible definitions for the concept of bounded variation. See [1, 11, 19] for
several such definitions and a considerable amount of discussion.

In the same way, for multiple parameter Wiener spaces, one can formulate
the idea of a reflection principle in a variety of manners. In this section, we
will consider several such formulations and determine whether the space C2(Q)
satisfies each of them.

For ordinary single parameter Wiener space, we note that x(0) = 0 for x ∈
C0[0, T ]; therefore considering again the single parameter reflection principle,
we see that

m

{

x : sup
[0,T ]

x(t) ≥ c

}

= 2m {x : x(T ) ≥ c}

= 2m {x : x(T ) ≥ c;x(0) ≥ c}
+ 2m {x : x(T ) ≥ c;x(0) < c}

= 2m

{

x : max
{0,T}

x(t) ≥ c

}

for c ≥ 0. From this, we might consider the reflection principle to be a means
of expressing either of the following:

(1) a relationship between the behavior of the supremum x(t) on the in-
terval to its behavior at the endpoint T of the interval, or

(2) a relationship between the behavior of the supremum x(t) on the in-
terval to its behavior on the boundary {0, T } of the interval.

We immediately have two candidate formulations for a reflection principle in
the two parameter setting; we can ask the following corresponding questions:

(1) Is there a constant k1 ≥ 0 so that for every c ≥ 0,

(15) my

{

x : sup
Q

x(s, t) ≥ c

}

= k1 my {x : x(S, T ) ≥ c}?

(2) Is there a constant k2 ≥ 0 so that for every c ≥ 0,

(16) my

{

x : sup
Q

x(s, t) ≥ c

}

= k2 my

{

x : sup
∂Q

x(s, t) ≥ c

}

?

In fact, the answer to both questions is negative, as we will demonstrate below.
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We wish to compare my

{

x : supQ x(s, t)≥c
}

with either my {x : x(S, T )≥c}
or my

{

x : sup∂Q x(s, t) ≥ c
}

; therefore we define

γ1(c) =
my

{

x : supQ x(s, t) ≥ c
}

my {x : x(S, T ) ≥ c}(17)

and

γ2(c) =
my

{

x : supQ x(s, t) ≥ c
}

my

{

x : sup∂Q x(s, t) ≥ c
} .(18)

Observe that both γ1 and γ2 are continuous on [0,∞); moreover it is easy
to see that γ1(0) = 2 and γ2(0) = 1. Also, in [24], Zimmerman shows that
γ1(c) ≤ 4 for all c ≥ 0.

3.1. Negative answer to the first question

For each c ≥ 0, we consider the following sets:

Ac =

{

x : sup
[0,S]

x(s, T ) ≥ c

}

,(19)

Bc =

{

x : sup
Q

x(s, t) ≥ c; sup
[0,S]

x(s, T ) < c

}

,(20)

and

Dc =

{

x : sup
Q

x(s, t) < c

}

.(21)

It is clear that Ac, Bc, and Dc are disjoint and that

(22) C2(Q) = Ac ∪Bc ∪Dc,

and putting f(c) = my(Ac), g(c) = my(Bc), and h(c) = my(Dc), we observe
that

(23) 1 = f(c) + g(c) + h(c).

We will make use of the following theorem of Cameron and Storvick from
[4].

Theorem 2. Let F be a functional defined on C0[0, S] such that F (
√
Tw) is

a Wiener measurable functional of w on C0[0, S]. Then F (x(·, T )) is a Yeh-

Wiener measurable functional of x on C2(Q) and

(24)

∫

C2(Q)

F (x(·, T ))my(dx) =

∫

C0[0,S]

F (
√
Tw)m(dw),

where the existence of either integral implies the existence of the other with

equality.
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Remark 1. As shown by Skoug in [18], the hypothesis of measurability in the

previous theorem can be assumed either for F (x) on C2(Q) or for F (
√
Tw) on

C0[0, S], and the measurability of one will imply the measurability of the other.

Using this theorem, we demonstrate that, as one would reasonably expect,
the space C2(Q) exhibits a reflection principle when restricted to any horizontal
or vertical line in Q.

Proposition 1. For c ≥ 0,

f(c)=my

{

x : sup
[0,S]

x(s, T ) ≥ c

}

=2 my {x : x(S, T ) ≥ c}=2erfc(c, ST ).(25)

Proof. Using (1) and (24) above, a computation and an easy change of variable
show that

f(c) =

∫

C2(Q)

χ[c,∞)

(

sup
[0,S]

x(s, T )

)

my(dx)

=

∫

C0[0,S]

χ[c,∞)

(

sup
[0,S]

√
Tw(s)

)

m(dw)

=
2√
2πS

∫ ∞

0

χ[c,∞)

(√
Tu
)

exp

(

− u2

2S

)

du

=
2√

2πST

∫ ∞

0

χ[c,∞)(u) exp

(

− u2

2ST

)

du

=
2√

2πST

∫ ∞

c

exp

(

− u2

2ST

)

du

= 2my {x : x(S, T ) ≥ c}
for each c ≥ 0. �

The next lemma follows readily from equations (21), (22), (23), and (25)
above.

Lemma 2.

(1) The function f(c) is smooth, strictly decreasing, and concave upward

on [0,∞). Furthermore, f(0) = 1, limc→∞ f(c) = 0, and f has a fixed

point in (0, 1).
(2) The function h(c) = my(Dc) is continuous and strictly increasing on

[0,∞), with h(0) = 0, limc→∞ h(c) = 1, and h(c) = 1− c for some c in

(0, 1).
(3) The function g(c) = my(Bc) is continuous on [0,∞), with g(0) = 0,

limc→∞ g(c) = 0 and f(c) + g(c) = c for some c in (0, 1).

Now, using (17), (21), (23), and (25), it follows that

γ1(c) =
2my

{

x : supQ x(s, t) ≥ c
}

my(Ac)
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=
2(1− h(c))

f(c)

=
2(f(c) + g(c))

f(c)
(26)

= 2 +
2g(c)

f(c)

≥ 2

for each c ≥ 0. Moreover, 2 = γ1(0) ≤ γ1(c) ≤ 4 by Zimmerman’s result; this
and (26) imply that

(27) 0 = g(0) ≤ g(c) ≤ f(c) ≤ f(0) = 1

on [0,∞). Now, 2 = γ1(0) = 2+ 2g(c)
f(c) , so that if γ1 is to be equal to a constant

k1 it must be the case that g is identically zero on [0,∞).
We now show that this cannot be true. For c > 0, put

φ(s, t) =



















8c
ST

if 0 ≤ s ≤ S
2 , 0 ≤ t ≤ T

2

− 8c
ST

if S
2 < s ≤ S, 0 ≤ t ≤ T

2

− 8c
ST

if T
2 < t ≤ T, 0 ≤ s ≤ S

2
8c
ST

if S
2 < s ≤ S, T

2 < t ≤ T

and let

(28) x0(s, t) =

∫ s

0

∫ t

0

φ(u, v)dvdu.

Note that x0

(

S
2 ,

T
2

)

= 2c and x0 = 0 on ∂Q. Denote by B(x0;
c
2 ) the ball of

radius c
2 around x0 and observe that this ball is contained in the set Bc, whence

(29) my

(

B(x0;
c
2 )
)

≤ my(Bc) = g(c).

As φ is of bounded variation in the sense of Hardy-Krause (see [1] for expla-
nation), we apply the Cameron-Martin theorem for C2(Q) as found in [22] to
see that

my

(

B(x0;
c
2 )
)

=

∫

B(x0,
c
2 )

my(dx)

=

∫

B(0,
c
2 )

exp

(

−1

2
||φ||22 +

∫

Q

φ(s, t)dx(s, t)

)

my(dx)

≥ exp

(

−32c2

ST

)∫

B(0,
c
2 )

exp

(

−36c2

ST

)

my(dx)(30)

≥ exp

(

−68c2

ST

)

my

(

B(0, c
2 )
)

> 0,
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where we have used the fact that the stochastic integral
∫

Q
φ(s, t)dx(s, t) is

equal my-a.e. to the ordinary Riemann-Stieltjes integral, whence we can inte-
grate to obtain

∫

Q

φ(s, t)dx(s, t) =
8c

ST

[

x(S, T ) + 4x(S2 ,
T
2 )− 2x(S, T

2 )− 2x(S2 , T )
]

,

which we can easily bound from below on B(0, c
2 ). Thus by (29) we see that

g(c) > 0 whenever c > 0, and thus (15) cannot hold for any constant k1.

3.2. Negative answer to the second question

In a similar fashion as above, put

A′
c =

{

x : sup
∂Q

x(s, t) ≥ c

}

,(31)

B′
c =

{

x : sup
Q

x(s, t) ≥ c; sup
∂Q

x(s, t) < c

}

(32)

and

D′
c =

{

x : sup
Q

x(s, t) < c

}

.(33)

As above, C2(Q) is the disjoint union of these sets. We let F (c) = my(A
′
c),

G(c) = my(B
′
c), and H(c) = my(D

′
c), so that

(34) 1 = F (c) +G(c) +H(c).

From this, we can write

γ2(c)

(35)

=
my

{

x : supQ x(s, t) ≥ c
}

my

{

x : sup∂Q x(s, t) ≥ c
}

=
my

{

x : sup∂Q x(s, t) ≥ c
}

+my

{

x : supQ x(s, t) ≥ c; sup∂Q x(s, t) < c
}

my

{

x : sup∂Q x(s, t) ≥ c
}

= 1 +
G(c)

F (c)
.

As above, the fact that γ2(0) = 1 implies that (16) holds for a constant
k2 = 1 only if G(c) = 0 for all c. Taking the same x0 as defined in (28), we
observe that the ball B(x0;

c
2 ) is contained in B′

c and then using (30) we can
demonstrate that

0 < my(B
(

x0;
c
2 )
)

≤ my(B
′
c) = G(c)

for c > 0, and so (16) cannot hold for any constant k2.
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Easily extending results from [16], in [17] we obtain the explicit formula

F (c) = my

{

x : sup
∂Q

x(s, t) ≥ c

}

=
3√

2πST

∫ ∞

c

exp

(

− u2

2ST

)

du−
exp

(

4c2

ST

)

√
2πST

∫ ∞

3c

exp

(

− u2

2ST

)

du(36)

= 3erfc(c, ST )− exp

(

4c2

ST

)

erfc(3c, ST ).

The following properties of F , G, and H follow easily from equations (34),
(35), and (36).

Lemma 3.

(1) The function F (c) = my(A
′
c) is smooth and strictly decreasing, with

F (0) = 1 and limc→∞ F (c) = 0, and F has a fixed point in (0, 1).
(2) The function H(c) = my(D

′
c) is continuous and strictly increasing on

[0,∞), with H(0) = 0, limc→∞ H(c) = 1, and H(c) = 1− c for some c

in (0, 1).
(3) The function G(c) = my(B

′
c) is continuous on [0,∞) with G(0) = 0,

limc→∞ G(c) = 0, and F (c) +G(c) = c for some c in (0, 1).

3.3. Other observations and conclusions

While we are unable to obtain γ1 and γ2 explicitly, we collect some obser-
vations about their behavior in this section.

Lemma 4. limc→∞ γ1(c) = 4 and γ1 has a fixed point in the interval (2, 4).

Proof. In [13], for the special case S = T = 1, Goodman showed (see [17] for
our setting) that

(37) lim
c→∞

my

{

x : supQ x(s, t) ≥ c
}

4√
2πST

∫∞
c

exp
(

− u2

2ST

)

du
= 1.

Also, by (23) and (26) we see that

my

{

x : supQ x(s, t) ≥ c
}

4√
2πST

∫∞
c

exp
(

− u2

2ST

)

du
=

1− h(c)

2f(c)
=

f(c) + g(c)

2f(c)
.(38)

From (37) and (38) we determine that limc→∞
g(c)
f(c) = 1, and then using (26) it

is easy to see that

(39) lim
c→∞

γ1(c) = lim
c→∞

(

2 +
2g(c)

f(c)

)

= 4.

The existence of the fixed point now follows immediately from the continuity
of γ1 and the fact that 2 < γ1(2) < γ1(4) < 4. �
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Recall that γ1(0) = 2 and γ2(0) = 1, whence

my {x : x(S, T ) ≥ c} =
1√

2πST

∫ ∞

c

exp

(

− u2

2ST

)

du = erfc(c, ST ),

and that my

{

x : supQ x(s, t) ≥ c
}

= my

{

x : sup∂Q x(s, t) ≥ c
}

= 1 for c < 0.
From this and the results in [17], our final corollary follows immediately.

Corollary 8. The functions γ1 and γ2 enjoy the following properties.

(1) limc→∞ γ2(c) =
3
2 and γ2 has a fixed point in the interval (1, 3

2 ).

(2) for −∞ < c ≤ 0, γ2(c) = 1 and γ1(c) = (erfc(c, ST ))
−1

.

We remark that if any of the functions γ1, γ2, or G could be obtained
explicitly then each of the others would be known as well; in addition an explicit
expression for the distribution of supQ x(s, t) would thus be obtained.

4. A positive reflection result for C2(Q)

In light of (25), we see a way in which to formulate a reflection principle
which will hold for C2(Q). We have a partial result in Proposition 1, but we
can quickly extend this in a very natural manner.

Let ≤ be a partial order on Q such that (s1, t1) ≤ (s2, t2) if and only if
s1 ≤ s2 and t1 ≤ t2. We will say that a differentiable function φ : [0, S] → Q

is a smooth increasing path in Q if it satisfies φ(s1) ≤ φ(s2) whenever s1 ≤ s2,
and 0 < ||φ′(s)|| < M for some positive M (here φ′ is the derivative vector for
φ and ||·|| is the Euclidean norm on Q).

We begin with a very basic lemma.

Lemma 5. Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ S and 0 ≤ t1 ≤ t2 ≤ t3 ≤
t4 ≤ T with each (si, ti) distinct for i = 1, 2, 3, 4. Then the random variables

X = x(s4, t4) − x(s3, t3) and X ′ = x(s2, t2) − x(s1, t1) are independent and

symmetrically distributed.

Proof. The proof of independence is essentially a calculation, as

E[XX ′] =

∫

C2(Q)

[x(s4, t4)− x(s3, t3)][x(s2, t2)− x(s1, t1)]my(dx)

= min(s4, s2)min(t4, t2)−min(s4, s1)min(t4, t1)

−min(s3, s2)min(t3, t2) + min(s3, s1)min(t3, t1)

= s2t2 − s1t1 − s2t2 + s1t1

= 0.

Now, the fact that X and X ′ are Gaussian (being the sum of Gaussian random
variables), independence and symmetry follow immediately. �

Using this and Lemma 1 we can prove the following theorem in essentially
the same manner as Theorem 1. It establishes a reflection principle on C2(Q)
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when our attention is restricted to the behavior of the space only over an
increasing path φ in Q.

Theorem 3. Let φ : [0, S] → Q be a smooth increasing path in Q with φ(0) =
(0, t0) or φ(0) = (s0, 0) and let c ≥ 0. Then

(40) my

{

x : sup
[0,S]

x(φ(s)) ≥ c

}

= 2my {x : x(φ(S)) ≥ c} .

Proof. Note that the condition on φ(0) guarantees that x(φ(0)) = 0 and the
fact that 0 < ||φ′|| both prevents the potential pathologies of a constant path,
and combined with the increasing property of φ ensures that for any s1 < s2 <

s3 < s4, the points {φ(si)} will satisfy the hypotheses of Lemma 5.
Now we can use the independence and symmetry guaranteed by Lemma 5

to assure that for X0 = 0 and Xk = x(sk) − x(sk−1) satisfy the hypotheses
of Lemma 1. Then we essentially mimic the proof of Theorem 1, taking a to
be the zero function and taking b(s) = φ1(s)φ2(s), where φ1 and φ2 are the
coordinate functions of φ.

The only point of concern might be the estimate in (7). However, note that
b′(s) = φ1(s)φ

′
2(s) + φ2(s)φ

′
1(s) and the condition that ||φ′|| ≤ M is certainly

sufficient to bound ||b′||2, so this poses no difficulties. �

Note that the theorem certainly holds for any vertical or horizontal path in
Q, as Proposition 1 would indicate. The restrictions on the path φ above are
fairly strong and can certainly be relaxed, as the following corollary shows.

Corollary 9. Let φ : [0, S] → Q be any continuous function with φ(0) = (0, t0)
or φ(0) = (s0, 0) and let c ≥ 0. Then

(41) my

{

x : sup
[0,S]

x(φ(s)) ≥ c

}

= 2my {x : x(φ(S)) ≥ c} .

Proof. Observe that there is a sequence of increasing paths {φn} ⊆ C1([0, S], Q)
converging uniformly to φ. Now, note that

lim
n→∞

χ{x:sup[0,S] x(φn(s))≥c}(x) = χ{x:sup[0,S] x(φ(s))≥c}(x)

and also that
lim

n→∞
χ{x:x(φn(S))≥c}(x) = χ{x:x(φ(S))≥c}(x)

pointwise in x. From this we conclude that

my

{

x : sup
[0,S]

x(φ(s)) ≥ c

}

= lim
n→∞

my

{

x : sup
[0,S]

x(φn(s)) ≥ c

}

= lim
n→∞

2my {x : x(φn(S)) ≥ c}
= 2my {x : x(φ(S)) ≥ c} ,

by dominated covergence. �
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We conclude by remarking that the condition φ(0) = (s0, 0) or φ(0) = (0, t0)
can also be relaxed by taking b(s) = φ1(s)φ2(s) − φ1(0)φ2(0) in the proof of
Theorem 4; this results in no difference to the proof or results of the theorem
or its corollary.
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