• Title/Summary/Keyword: Supramolecular assembly

Search Result 38, Processing Time 0.024 seconds

Self-Assembly of Supramolecular Liquid Crystalline Materials (초분자 액정 자기조립체)

  • 이수림;윤동기;정대환;정희태
    • Polymer Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.296-302
    • /
    • 2004
  • 최근 분자들의 자기조립 현상을 나노-바이오 소자 개발에 응용하는 연구가 활발히 진행되고 있으며, 이러한 응용을 위한 대표적인 자기조립체로는 양친성 계면활성제, 블록공증합체, 콜로이드와 초분자체를 들 수 있다. 대부분의 콜로이드가 구형 모양으로 vander Waals interaction에 의하여 3-D결정 (crystal) 형태의 자기조립구조를 형성하는 반면에, 콜로이드를 제외한 대부분의 자기조립체는 적정 조건에서 액정 (liquid crystals), 결정 (crystal) 및 무정형 (amorphous)을 형성한다. 적용하고자 하는 응용의 범위와 재료의 특성에 따라서 각 상태 (phase)를 이용할 수 있으나, 액정상을 이용하는 것과 결정상을 이용하는 경우가 대부분이다. (중략)

  • PDF

Interfacial Engineering of Graphenes for Energy and Biosensor Devices

  • Park, H.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.12-12
    • /
    • 2011
  • Interfacing functional materials with electrical or biological systems is of prime importance in terms of expanding applicative fields and obtaining high performances of devices. Herein, I report the functionalization of graphenes through supramolecular assembly and their electrochemical applications into fuel cells, supercapacitors, and biosensor devices. The solution processable nanohybridization of graphenes by functional materials such as ionic liquids, polyelectrolytes, block copolymers, and biomaterials, described herein would pave the way to obtain high performances of flexible energy and biosensor devices as well as to overcome the existing technology barriers.

  • PDF

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Studies of Inter/intramolecular Weak Interactions with CH… S; and S…arene Interaction in Symmetrical and Dissymmetrical Models

  • Dubey, Rashmi;Tewari, Ashish K.;Ravikumar, K.;Sridhar, B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1326-1330
    • /
    • 2010
  • Evidences have proved the versatile role of sulfur atom in supramolecular chemistry. $^1$Presence of S atom in the molecule usually results in the specific structural properties of molecules. In the present study, $S{\cdots}arene$, $N{\cdots}arene$, $CH{\cdots}{\pi}$, $CH{\cdots}S$ and $CH{\cdots}N$ type of weak interactions stabilize the conformation and self assembly of symmetrical as well as dissymmetrical molecules.

Fabrication of Functional Microcapsule for Drug Delivery by using Droplet Phase Flow (Droplet 유동을 이용한 마이크로캡슐의 제작)

  • Jeong, Eun-Ho;Abraham, Sinoj;Kim, Il;Go, Jeung-Sang;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.89-92
    • /
    • 2005
  • A microcapsule for drug delivery was successfully produced by utilizing the flow-through droplet-based supramolecular self-assembly in a crossed microchannel network. The PS-b-PMMA block copolymer synthesized atom transfer radical polymerization (ATRP) was initially formed as microdroplets and after the evaporation process it turned to spherical capsule by polymer self-assembly of the micro domains. The characteristics were studied using various analysis methods.

  • PDF

Synthesis and Supramolecular Assembly of Ru(II)-Terpyridine Complexes linked with β-Cyclodextrin or Adamantyl Group (β-CD 또는 아다만탄이 결합된 루테늄(II)-터피리딘 착화합물의 제조와 초분자 조립)

  • Park, Dae-Rim;Chung, Yong-Chae;Choi, Kyung-Ho;Kim, Hyung-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.526-535
    • /
    • 2007
  • Ru(II)-terpyridine complexes (8, 9, 11) linked with adamantyl or β-cyclodextrin moieties were synthesized and characterized based on their 1H and 13C NMR spectra as well as MS spectra. Ru(II)-terpyridine complexes (8, 11) linked with adamantyl moiety were readily dissolved in aqueous solution via encapsulation by β-cyclodextrin when they were mixed with an equimolar amount of β-cyclodextrin. In the similar way, the adamantane guest of the Ru(II)-terpyridine complexes (8, 11) were encapsulated by β-cyclodextrin moiety of the ruthenium complex 9 to afford supramolecular assemblies in aqueous environment. Formation of assemblies was corroborated by 1H NMR spectroscopy.

Hydrogen-bonded Molecular Network of Anthraquinone on Au(111)

  • Kim, Ji-Yeon;Yoon, Jong-Keon;Park, Ji-Hun;Kim, Ho-Won;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.107-107
    • /
    • 2011
  • Supramolecular structures of anthraquinone molecules on a metallic surface are studied using scanning tunneling microscope (STM) under ultrahigh-vacuum conditions. When we deposited anthraquinone molecules on Au(111) substrate, the molecules formed three different phases (Chevron type, tetragon type and disordered type) on the surface. Based on our STM measurements, we proposed models for the observed molecular structures. Chevrons are consisted of several molecular chains, which make well-ordered two-dimensional islands by some weak interrow interactions and we could observe tetragon structures which make array of (111) metallic surface. each molecular rows in the chevrons are stabilized by two parallel O-H hydrogen bonds and disordered structures are observed 1-dimensional phase with hydrogen bond. First-principles calculations based on density functional theory are performed to reproduce the proposed models. Distances and energy gains for each intermolecular bond are estimated. In this presentation, we explain possible origins of these molecular structures in terms of hydrogen bonds, Van der Waals interactions and molecule-substrate interactions.

  • PDF

Synthesis, Self-assembly, and Catalytic Activity of 1H-Imidazole Amphiphiles

  • Park, Jun-Ha;Kim, Min-Soo;Seo, Sang-Hyuk;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2193-2198
    • /
    • 2011
  • We prepared polycatenar 1H-imidazole amphiphiles having a structure in which a 1H-imidazole head was connected through a benzene ring to a pheny group having two or three oligo(ethylene glycol) chains and studied their supramolecular assembly by fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). When the aqueous solutions of the amphiphiles ($5{\times}10^{-5}M{\sim}10^{-3}M$) were deposited onto a carbon-coated copper grid and dried, twisted structures with diameters of ~200-300 nm were imaged by TEM and AFM. We presume that the structures comprised a chain of the amphiphile dimers formed via successive hydrogen bonding between the 1H of the imidazole group and 3N of the neighboring one. In a solution of pH 4, entangled fibers with diameters of several nanometers were observed by TEM. In a pH 10 solution, film-like aggregates formed exclusively. The 1H-imidazole amphiphiles hydrolyzed tetraethoxysilane to induce gelation to form fibrous and spherical silica structures at neutral pH in aqueous solutions. No silica was formed when imidazole was used instead of the amphiphiles, suggesting that the selfassembled aggregates of the amphiphiles were responsible for the gelation.

Tetrameric Self-Assembly of a Cu(II) Complex Containing Schiff-Base Ligand and Its Unusually High Catecholase-like Activity

  • Sarkar, Shuranjan;Lee, Woo Ram;Hong, Chang Seop;Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2731-2736
    • /
    • 2013
  • We report a new tetrameric supramolecular Cu(II) complex ($Cu_4L_4$ = tetrakis(N,N'-bis(salicylidene)-2,2'-ethylenedianiline)Copper(II)) with a Schiff-base ligand ($H_2L$ = N,N'-bis (salicylaldimine)-1,2-ethylenediamine) containing two N,O-bidentate chelate groups. Though the copper sites of $Cu_4L_4$ are non-coupled, the complex exhibits a unsually high catecholase-like activity ($k_{cat}=935h^{-1}$) when the $Cu_4L_4$ solution is treated with 3,5-di-tert-butylcatechol (3,5-DTBC) at basic condition in the presence of air. Combined information obtained from UV-VIS and EPR measurements could lead the suggestion of the reaction pathway in which the substrate may bind to Cu(II) ions by anti-anti didentate bridging mode.