• Title/Summary/Keyword: Supply error rate

Search Result 111, Processing Time 0.032 seconds

Forward Error Correction based Adaptive data frame format for Optical camera communication

  • Nguyen, Quoc Huy;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Lee, Seonhee
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • Optical camera communication (OCC) is an extension of Visible Light Communication. Different from traditional visible light communication, optical camera communications is an almost no additional cost technology by taking the advantage of build-in camera in devices. It was became a candidate for communication protocol for IoT. Camera module can be easy attached to IoT device, because it is small and flexible. Furthermore almost smartphone equip one or two camera for both back and font side with high quality and resolution. It can be utilized for receiving the data from LED or positioning. Actually, OCC combines illumination and communication. It can supply communication for special areas or environment where do not allow Radio frequency such as hospital, airplane etc. There are many concept and experiment be proposed. In this paper we proposed utilizing Android smart-phone camera for receiver and introduce new approach in modulation scheme for LED at transmitter. It also show how Manchester coding can be used encode bits while at the same time being successfully decoded by Android smart-phone camera. We introduce new data frame format for easy decoded and can be achieve high bit rate. This format can be easy to adapt to performance limit of Android operator or embedded system.

Design of Low-Power High-Performance Analog Circuits for UHF Band RFID Tags (UHF대역 RFID 태그를 위한 저전력 고성능 아날로그 회로 설계)

  • Shim, Hyun-Chul;Cha, Chung-Hyeon;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.130-136
    • /
    • 2008
  • This paper describes a low-power high-performance analog front-end block for $UHF(860{\sim}960MHz)$ band RFID tag chips. It satisfies ISO/IEC 18000-6 type C(EPCgolbal class1. generation2.) and includes a memory block for test. For reducing power consumption, it operates with a internally generated power supply of 1V. An ASK demodulator using a current-mode schmitt trigger is proposed and designed. The proposed demodulator has an error rate as low as 0.014%. It is designed using a 0.18um CMOS technology. The simulation results show that the designed circuit can operate properly with an input as low as $0.2V_{peak}$ and consumes $2.63{\mu}A$. The chip size is $0.12mm^2$

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

The Dynamic Relationship between Household Loans of Depository Institutions and Housing Prices after the Financial Crisis (금융위기 이후 예금취급기관 가계대출과 주택가격의 동태적 관계)

  • Han, Gyu-Sik
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.4
    • /
    • pp.189-203
    • /
    • 2020
  • Purpose - This study aims in analyzing the dynamic relationship between household loans and housing prices according to the characteristics of depository institutions after the financial crisis, identifying the recent trends between them, and making policy suggestions for stabilizing house prices. Design/methodology/approach - The monthly data used in this study are household loans, household loan interest rates, and housing prices ranging from January 2012 to May 2020, and came from ECOS of the Bank of Korea and Liiv-on of Kookmin Bank. This study used vector auto-regression, generalized impulse response function, and forecast error variance decomposition with the data so as to yield analysis results. Findings - The analysis of this study no more shows that the household loan interest rates in both deposit banks and non-bank deposit institutions had statistically significant effects on housing prices. Also, unlike the previous studies, there was statistically significant bi-directional causality between housing prices and household loans in neither deposit banks nor non-bank deposit institutions. Rather, it was found that there is a unidirectional causality from housing prices to household loans in deposit banks, which is considered that housing prices have one-sided effects on household loans due to the overheated housing market after the financial crisis. Research implications or Originality - As a result, Korea's housing market is closely related to deposit banks, and housing prices are acting as more dominant information variables than interest rates or loans under the long-term low interest rate trend. Therefore, in order to stabilize housing prices, the housing supply must be continuously made so that everyone can enjoy housing services equally. In addition, the expansion and reinforcement of the social security net should be realized systematically so as to stop households from being troubled with the housing price decline.

I/Q channel 12-Bit 120MHz CMOS D/A Converter for WLAN (무선랜용 I/Q 채널 12bit 120MHz CMOS D/A 변환기 설계)

  • Ha, Sung-Min;Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.83-89
    • /
    • 2006
  • This paper describes the design of I/Q channel 12bit Digital-to-Analog Converter(DAC) which shows the conversion rate of 120MHz and the power supply of 3.3V with 0.35um CMOS n-well 1-poly 4-metal process for advanced wireless transceiver. The proposed DAC utilizes 4-bit thermometer decoder with 3 stages for minimum glitch energy and linearity error. Also, using a optimized 4bit thermometer decoder for the decrement of the chip area. Integral nonlinearity(INL) of ${\pm}1.6LSB$ and differential nonlinearity(DNL) of ${\pm}1.3LSB$ have been measured. In single tone test, the ENOB of the proposed 12bit DAC is 10.5bit and SFDR of 73dB(@ Fs=120MHz, Fin=1MHz) is measured, respectively. Dual-tone test SFDR is 61 dB (@ Fs=100MHz, Fin=1.5MHz, 2MHz). Glitch energy of 31 pV.s is measured. The converter consumes a total of 105mW from 3.3-V power supply.

A LDPC Decoder for DVB-S2 Standard Supporting Multiple Code Rates (DVB-S2 기반에서 다양한 부호화 율을 지원하는 LCPC 복호기)

  • Ryu, Hye-Jin;Lee, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • For forward error correction, DVB-S2, which is the digital video broadcasting forward error coding and modulation standard for satellite television, uses a system based the concatenation of BCH with LDPC inner coding. In DVB-S2 the LDPC codes are defined for 11 different code rates, which means that a DVB-S2 LDPC decoder should support multiple code rates. Seven of the 11 code rates, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10, are regular and the rest four code rates, 1/4, 1/3, 2/5, and 1/2, are irregular. In this paper we propose a flexible decoder for the regular LDPC codes. We combined the partially parallel decoding architecture that has the advantages in the chip size, the memory efficiency, and the processing rate with Benes network to implement a DVB-S2 LDPC decoder that can support multiple code rates with a block size of 64,800 and can configure the interconnection between the variable nodes and the check nodes according to the parity-check matrix. The proposed decoder runs correctly at the frequency of 200MHz enabling 193.2Mbps decoding throughput. The area of the proposed decoder is $16.261m^2$ and the power dissipation is 198mW at a power supply voltage of 1.5V.

The Economic Growth of Korea Since 1990 : Contributing Factors from Demand and Supply Sides (1990년대 이후 한국경제의 성장: 수요 및 공급 측 요인의 문제)

  • Hur, Seok-Kyun
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.169-206
    • /
    • 2009
  • This study stems from a question, "How should we understand the pattern of the Korean economy after the 1990s?" Among various analytic methods applicable, this study chooses a Structural Vector Autoregression (SVAR) with long-run restrictions, identifies diverse impacts that gave rise to the current status of the Korean economy, and differentiates relative contributions of those impacts. To that end, SVAR is applied to four economic models; Blanchard and Quah (1989)'s 2-variable model, its 3-variable extensions, and the two other New Keynesian type linear models modified from Stock and Watson (2002). Especially, the latter two models are devised to reflect the recent transitions in the determination of foreign exchange rate (from a fixed rate regime to a flexible rate one) as well as the monetary policy rule (from aggregate targeting to inflation targeting). When organizing the assumed results in the form of impulse response and forecasting error variance decomposition, two common denominators are found as follows. First, changes in the rate of economic growth are mainly attributable to the impact on productivity, and such trend has grown strong since the 2000s, which indicates that Korea's economic growth since the 2000s has been closely associated with its potential growth rate. Second, the magnitude or consistency of impact responses tends to have subsided since the 2000s. Given Korea's high dependence on trade, it is possible that low interest rates, low inflation, steady growth, and the economic emergence of China as a world player have helped secure capital and demand for export and import, which therefore might reduced the impact of each sector on overall economic status. Despite the fact that a diverse mixture of models and impacts has been used for analysis, always two common findings are observed in the result. Therefore, it can be concluded that the decreased rate of economic growth of Korea since 2000 appears to be on the same track as the decrease in Korea's potential growth rate. The contents of this paper are constructed as follows: The second section observes the recent trend of the economic development of Korea and related Korean articles, which might help in clearly defining the scope and analytic methodology of this study. The third section provides an analysis model to be used in this study, which is Structural VAR as mentioned above. Variables used, estimation equations, and identification conditions of impacts are explained. The fourth section reports estimation results derived by the previously introduced model, and the fifth section concludes.

  • PDF

Algorithm and Performance Evaluation of High-speed Distinction for Condition Recognition of Defective Nut (불량 너트의 상태인식을 위한 고속 판별 알고리즘 및 성능평가)

  • Park, Tae-Jin;Lee, Un-Seon;Lee, Sang-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.895-904
    • /
    • 2011
  • In welding machine that executes existing spot welding, wrong operation of system has often occurs because of their mechanical motion that can be caused by a number of supply like the welding object. In exposed working environment for various situations such as worker or related equipment moving into any place that we are unable to exactly distinguish between good and not condition of nut. Also, in case of defective welding of nut, it needs various evaluation and analysis through image processing because the problem that worker should be inspected every single manually. Therefore in this paper, if the object was not stabilization state correctly, we have purpose to algorithm implementation that it is to reduce the analysis time and exact recognition as to improve system of image processing. As this like, as image analysis for assessment whether it is good or not condition of nut, in his paper, implemented algorithms were suggested and list by group and that it showed the effectiveness through more than one experiment. As the result, recognition rate of normality and error according to the estimation time have been shown as 40%~94.6% and 60%~5.4% from classification 1 of group 1 to classification 11 of group 5, and that estimation time of minimum, maximum, and average have been shown as 1.7sec.~0.08sec., 3.6sec.~1.2sec., and 2.5sec.~0.1sec.

A Study on Asthmatic Occurrence Using Deep Learning Algorithm (딥러닝 알고리즘을 활용한 천식 환자 발생 예측에 대한 연구)

  • Sung, Tae-Eung
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.674-682
    • /
    • 2020
  • Recently, the problem of air pollution has become a global concern due to industrialization and overcrowding. Air pollution can cause various adverse effects on human health, among which respiratory diseases such as asthma, which have been of interest in this study, can be directly affected. Previous studies have used clinical data to identify how air pollutant affect diseases such as asthma based on relatively small samples. This is high likely to result in inconsistent results for each collection samples, and has significant limitations in that research is difficult for anyone other than the medical profession. In this study, the main focus was on predicting the actual asthmatic occurrence, based on data on the atmospheric environment data released by the government and the frequency of asthma outbreaks. First of all, this study verified the significant effects of each air pollutant with a time lag on the outbreak of asthma through the time-lag Pearson Correlation Coefficient. Second, train data built on the basis of verification results are utilized in Deep Learning algorithms, and models optimized for predicting the asthmatic occurrence are designed. The average error rate of the model was about 11.86%, indicating superior performance compared to other machine learning-based algorithms. The proposed model can be used for efficiency in the national insurance system and health budget management, and can also provide efficiency in the deployment and supply of medical personnel in hospitals. And it can also contribute to the promotion of national health through early warning of the risk of outbreak by atmospheric environment for chronic asthma patients.

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.